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Abstract

Background: Patients with Inflammatory Bowel Disease (IBD), most commonly Crohn’s disease (CD) or
ulcerative colitis (UC), suffer from chronic intestinal inflammation of unknown etiology. Increased proinflammatory
macrophages (M1) have been documented in tissue from patients with CD. Anti-inflammatory macrophages (M2)
may play a role in UC given the preponderance of Th2 cytokines in this variant of IBD. Animal and clinical studies
have shown that the probiotic VSL#3 can ameliorate signs and symptoms of IBD. Although animal data suggests a
modulatory effect on macrophage phenotype, the effect of VSL#3 on human macrophages remains unknown.

Objective: To determine the effect of the probiotic VSL#3 on the phenotype of polarized (M1/M2) and
unpolarized (MΦ) human macrophages.

Methods: Human monocyte-derived macrophages, generated by culturing monocytes with M-CSF, were left
unpolarized or were polarized towards an M1 or an M2 phenotype by culture with LPS and IFN-γ or IL-4,
respectively, and were then cultured in the presence or absence of VSL#3 for 3 days. Changes in macrophage
morphology were assessed. Cytokine and chemokine levels in supernatants were determined by multiplex assay.

Results: VSL#3 decreased the granuloma-like aggregates of M1 macrophages, increased fibroblast-like M2
macrophages, and decreased fibroblast-like MΦ macrophages. VSL#3 increased the secretion of IL-1β, IL-6, IL-10,
and G-CSF by M1, M2, and MΦ macrophages. VSL#3 exposure maintained the proinflammatory phenotype of M1
macrophages, sustaining IL-12 secretion, increasing IL-23 secretion, and decreasing MDC secretion. Both VSL#3-
treated M2 and MΦ macrophages secreted higher levels of anti-inflammatory and pro-healing factors such as
IL-1Ra, IL-13, EGF, FGF-2, TGF-α, and VEGF, as well as proinflammatory cytokines, including IL-12 and TNF-α.

Conclusion: Under our experimental conditions VSL#3 induced a mixed proinflammatory and anti-inflammatory
phenotype in polarized and unpolarized macrophages. This differential effect could explain why patients with CD do
not respond to probiotic therapy as well as patients with UC.
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Ulcerative colitis; Crohn’s disease; Probiotic; VSL#3

Abbreviations
ANOVA: Analysis of Variance; ∆CCS: Change in Cytokine and
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with two cysteines separated by an amino acid on the N-terminus;
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Factor; FAO: Food and Agriculture Organization of the United
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alpha; IL-1β: Interleukin 1 beta; IL-1Ra: Interleukin 1 receptor
antagonist; IL-2: Interleukin 2; IL-4: Interleukin 4; IL-6: Interleukin 6;
IL-7: Interleukin 7; IL-8: Interleukin 8, also known as CXCL8; IL-9:
Interleukin 9; IL-10: Interleukin 10; IL-12p40: Interleukin 12 p40
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Protein 1, also known as CCL2; MCP-3: Macrophage Chemoattractant
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Protein 3, also known as CCL7; M-CSF: Macrophage Colony
Stimulating Factor; MDC: Macrophage-Derived Chemokine, also
known as CCL22; MIP-1α: Macrophage Inhibitory Protein 1 alpha;
MIP-1β: Macrophage Inhibitory Protein 1 beta; NF-κB: Nuclear Factor
kappa B; PBMC: Peripheral Blood Mononuclear Cell; PBS: Phosphate
Buffered Saline; PerCP: Peridinin Chlorophyll; SEM: Standard Error of
the Mean; Th1: Type 1 helper T cell; Th2: Type 2 helper T cell; TGF-α:
Transforming Growth Factor alpha; TNF-α: Tumor Necrosis Factor
alpha; UC: Ulcerative Colitis; VEGF: Vascular Endothelial Growth
Factor; WHO: World Health Organization

Introduction
According to the Centers for Disease Control, over a million people

in the United States alone are affected by Inflammatory Bowel
Diseases (IBD), such as Crohn’s disease (CD) and ulcerative colitis
(UC). The inflammation in IBD has been generally regarded as
mediated by a type 1 helper T (Th1) cell response for CD and a type 2
helper T (Th2) cell response for UC [1]. The colon, or large intestine,
is one of the gastrointestinal organs most affected by IBD and is one of
the most macrophage- and bacteria-dense organs in the body [2,3].
While it remains unclear whether the altered microflora, or dysbiosis,
seen in patients with IBD results from or causes the condition, several
animal and clinical studies have shown that the pathology in animal
models and patients can be improved by treatment with probiotics
[4,5]. The Food and Agriculture Organization of the United Nations
(FAO) and the World Health Organization (WHO) have defined
probiotics as “live microorganisms which when administered in
adequate amounts confer a health benefit to the host” (FAO/WHO,
2001). The probiotic mixture VSL#3 contains the following 8 gram-
positive bacteria: Bifidobacterium breve, Bifidobacterium infantis,
Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus
delbrueckii subspecies bulgaricus, Lactobacillus casei, Lactobacillus
plantarum, and Streptococcus salivarius subspecies thermophilus.
VSL#3 has been shown to ameliorate inflammation in murine models
of IBD [6] and improve signs and symptoms of IBD in patients [7-9].

Recent findings by Bassaganya-Riera et al. in a mouse model of
acute DSS colitis suggest that VSL#3 acts by influencing macrophage
phenotype, specifically, by reducing the proportion of colonic
proinflammatory macrophages [10]. Previous studies have evaluated
the direct effect of VSL#3 on monocyte-derived dendritic cells [11-13],
but the effect that this particular probiotic formulation has on
monocyte-derived macrophages and/or human macrophages has not
been studied. Macrophages are a heterogeneous group of mononuclear
cells that play key roles in the defense and repair of the host [14].
These cells can be functionally and phenotypically classified into
macrophages that either promote (classically-activated macrophages,
M1) or antagonize (alternatively-activated macrophages, M2)
inflammation, somewhat analogous to the Th1-Th2 dichotomy of
helper T cells [15,16]. Kamada et al. reported an increased presence of
M1 macrophages in CD [17]. Notably, M2 macrophages result from
stimulation with Th2 cytokines, such as IL-4 and IL-13 [18-23], and
thus may contribute to the pathogenesis of UC [23].

In the present study, we used M1 and M2 human monocyte-derived
macrophages as a model system of macrophages present in patients
with CD and UC, respectively, and sought to determine the effect of
the probiotic mixture VSL#3 on these cells, as well as on unpolarized
macrophages (MΦ). We tested the hypothesis that the probiotic would
lead these macrophages to decrease proinflammatory cytokine and
chemokine secretion and increase secretion of anti-inflammatory

cytokines and chemokines, regardless of polarization status. Curiously,
we found that M1, M2, and MΦ macrophages exposed to VSL#3
secreted higher levels of certain proinflammatory and anti-
inflammatory factors and lower levels of others. We also found that
exposure to the probiotic VSL#3 produced marked alterations in the
morphology of M1, M2, and MΦ macrophages. Of note, both the
secretory and morphological changes were largely dependent on the
initial macrophage polarization status.

Materials and Methods

Ethics statement
All studies discussed herein were approved by the Institutional

Review Board (FWA 00000345) at Ponce School of Medicine and
Health Sciences (Ponce, PR, USA). Participating volunteers gave
informed consent.

Monocyte isolation
Blood from healthy volunteers [17,24,25] was collected in plastic

EDTA blood collection tubes. Peripheral blood mononuclear cells
(PBMCs) from blood diluted ~1:3.5 in (PBS + 2 mM EDTA) were
obtained by density gradient centrifugation with Ficoll-Paque
Premium (GE Healthcare Life Sciences, Pittsburgh, PA, USA) and
pooled in equal parts in order to obtain an equal representation from
each volunteer [24,25]. Monocytes were isolated from pooled PBMCs
by positive selection using CD14 magnetic microbeads (Miltenyi
Biotec Inc., Auburn, CA, USA), according to the manufacturer’s
instructions, and purity was confirmed by flow cytometry.

Macrophage culture and morphological analysis
Polarized monocyte-derived macrophages were generated by a

modification of the method by Martinez et al. [18-23]. On day 0
(Figure 1A), monocytes were plated in 6-well plates at a density of
5×105 cells/mL in 3 mL of RPMI 1640 medium (Thermo Scientific,
Waltham, MA, USA) supplemented with 20% heat-inactivated fetal
bovine serum (FBS; Thermo Scientific), 100 U/mL of penicillin, 100
μg/mL streptomycin, and 100 ng/mL macrophage colony-stimulating
factor (M-CSF; Peprotech, Rocky Hill, NJ, USA). The medium was
removed on day 7, and replaced with fresh RPMI containing
polarizing factors and supplemented with 5% heat-inactivated FBS,
100 U/mL penicillin, 100 μg/mL streptomycin. For M1 macrophages,
polarizing factors consisted of 20 ng/mL interferon (IFN)-γ
(Peprotech) and 100 ng/mL lipopolysaccharide (LPS; Sigma-Aldrich,
St. Louis, MO, USA), and, for M2 macrophages, 20 ng/mL interleukin
(IL)-4 (Peprotech). Unpolarized (MΦ) macrophages were incubated in
medium free of polarizing factors. After 18 hours (day 8), a 0.5 mL
sample of supernatant was collected to establish baseline cytokine
levels and confirm polarization status. Then, 0.5 mL of fresh medium
was added, and macrophages were cultured for an additional three
days in the absence or presence of 3.33×107 colony-forming units
(CFU) of the probiotic mixture VSL#3 (VSL Pharmaceuticals,
Gaithersburg, MD, USA) [11] dissolved in phosphate-buffered saline
(PBS). Controls received PBS only. The center and periphery of each
well was photographed to remove any potential for bias due to
differences in distribution, and supernatant from each well was
collected on day 11. Streak plates were performed for the probiotic
preparation before addition on day 8 and for the supernatants on day
11. The growth of several colonies on the plate for the probiotic
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preparation and of none on the plate for the supernatants from day 11
indicates a reduction in bacterial viability by the end of the three-day
incubation period. This reduction in bacterial viability was to be
expected given that the culture medium contained antibiotic and that
macrophages can avidly phagocytize bacteria [26]. Fibroblast-like,
round/oval (loose or in clusters), and total cells per mm2 were
quantified and fibroblast-like cell length was measured with ImageJ
v1.47m (NIH, Bethesda, MD, USA).

Flow cytometry
Monocyte and macrophage purity was assessed on day 0 and day 7,

respectively, by staining cells with anti-CD14-FITC and anti-CD3-
PerCP antibodies. IgG-FITC and IgG-PerCP were used as isotype
controls, and all antibodies were from BD Biosciences (San Jose, CA,
USA). Cells were incubated with antibody in the dark for 30 minutes,
washed with staining buffer (PBS, 1% FBS, 0.1% sodium azide), and
fixed with 0.5% paraformaldehyde. Stained cells were analyzed with a
FACSAria flow cytometer (BD, Franklin Lakes, NJ, USA).

Cytokine measurement and analysis
The levels of IL-1β, IL-4, IL-6, IL-10, IL-12p70, IL-23, and TNF-α in

supernatants collected on days 8 and 11 were measured by multiplex
assay (HTH17MAG-14K-07, EMD Millipore, Billerica, MA, USA). A
second multiplex assay (HCYTMAG-60K-PX38, EMD Millipore) was
used to measure levels of 38 cytokines and chemokines. For each
sample, the cytokine levels at day 8 were subtracted from those at day

11 to obtain the change in cytokine and chemokine secretion (∆CCS).
The fold change in the mean ∆CCS between untreated and VSL#3-
treated macrophages was computed for each type of macrophage by
dividing the mean ∆CCS of VSL#3-treated macrophages by the mean
∆CCS of untreated macrophages.

Statistical analysis
Differences in morphology between treatment groups were

compared via one-way ANOVA with a Tukey’s multiple comparisons
test in Prism v6.0a (Graphpad Software, Inc., La Jolla, CA, USA). A P
value less than 0.05 was considered statistically significant. For
cytokine analyses, descriptive statistics were computed with SPSS v21
(IBM Corp., Armonk, NY, USA) and a fold change in mean ∆CCS of ≥
2 or ≤ 0.5 was deemed significant only if the 95% confidence intervals
for the mean ∆CCS of the two treatments did not overlap. A fold
change of ≤ 0.5 indicates that the mean ∆CCS of VSL#3-treated
macrophages was half or less than the mean ∆CCS of untreated
macrophages, while a fold change of ≥ 2 indicates that the mean ∆CCS
of VSL#3-treated macrophages was twice or more than the mean
∆CCS of untreated macrophages.

Online supplemental material
For cytokines appearing in Tables 1-3, the mean levels ± standard

error of the mean (SEM) on days 8 and 11 are provided in
Supplemental Tables 1-3, respectively.

Analyte
M1 (pg/mL) M1 + VSL#3 (pg/mL) Fold-Change

Mean ∆CCS 95% CI Mean ∆CCS 95% CI

IL-1α # -0.40 -0.40, -0.40 13.90 11.74, 16.06 35.75

IL-1β * -39.95 -71.41, -8.49 324.90 277.47, 372.33 9.13

IL-4 # -3.95 -4.24, -3.66 8.40 3.89, 12.91 3.13

IL-6 * -1060.76 -2214.73, 93.21 5902.52 3883.72, 7921.32 6.56

IL-17A # -1.80 -3.17, -0.43 -4.05 -4.34, -3.76 2.25

G-CSF * -95.50 -159.20, -31.80 11120.81 10869.93, 11371.69 117.45

MDC x -238.50 -243.40, -233.60 -497.00 -618.52, -375.48 2.08

* Change seen in all macrophage types; # Change seen in this macrophage type only; x Change also seen in MΦ macrophages; Cytokine levels for days 8 and 11 are
shown in Supplemental Table 1; Levels for IL-8, IL-10, and TNF-α were above the detection limit at both time points and are therefore not reported

Table 1: Cytokines differentially secreted by M1 macrophages in response to VSL#3.

Analyte
M2 (pg/mL) M2 + VSL#3 (pg/mL) Fold-Change

Mean ∆CCS 95% CI Mean ∆CCS 95% CI

IL-1β * 0.12 -0.12, 0.36 71.17 70.92, 71.42 593.08

IL-1Ra 187.00 159.56, 214.44 490.00 462.56, 517.44 2.62

IL-2 11.15 9.48, 12.82 0.75 -1.31, 2.81 0.07

IL-6 * 3.15 0.90, 5.40 1813.15 1621.56, 2004.74 575.60

IL-7 2.55 0.49, 4.61 62.60 51.23, 73.97 24.55
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IL-8 -23.70 -49.77, 2.37 8367.00 8341.52, 8392.48 354.04

IL-9 0.60 0.50, 0.70 50.78 48.67, 52.88 84.63

IL-10 60.70 44.43, 76.97 9718.39 9701.73, 9735.05 160.11

IL-12p40 4.30 3.12, 5.48 545.15 498.01, 592.29 126.78

IL-12p70 2.90 2.90, 2.90 24.65 23.96, 25.34 8.50

IL-13 6.75 4.30, 9.20 21.15 12.82, 29.48 3.13

IL-15 9.05 3.07, 15.03 24.65 24.36, 24.94 2.72

EGF 1.35 1.25, 1.45 12.80 12.41, 13.19 9.48

Eotaxin 1.40 1.20 1.60 26.45 23.61, 29.29 18.89

FGF-2 4.75 3.67, 5.83 19.35 16.51, 22.19 4.07

Fractalkaline # 96.00 92.08, 99.92 237.50 207.12, 267.88 2.47

G-CSF * 23.60 14.19, 33.01 2134.85 2058.31, 2211.39 90.46

GRO 16.60 10.52, 22.68 4591.80 3891.49, 5292.11 276.61

IFN-α2 10.45 9.18, 11.72 39.50 37.93, 41.07 3.78

MCP-3 276.30 176.93, 375.67 45.65 45.16, 46.14 0.17

MIP-1α 20.65 13.89, 27.41 309.55 300.04, 319.06 14.99

MIP-1β 91.70 45.44, 137.96 980.80 770.30, 1191.30 10.70

TGF-α 33.00 32.22, 33.78 302.85 302.56, 303.14 9.18

TNF-α 17.15 2.35, 31.95 3378.05 3004.77, 3751.33 196.97

VEGF 65.80 56.98, 74.62 7630.30 7455.66, 7804.94 115.96

* Change seen in all macrophage types; # Change seen in this macrophage type only; Cytokine levels for days 8 and 11 are shown in Supplemental Table 2; Levels for
IL-4 were above the detection limit at both time points and are therefore not reported

Table 2: Cytokines differentially secreted by M2 macrophages in response to VSL#3.

Analyte
MΦ (pg/mL) MΦ + VSL#3 (pg/mL) Fold-Change

Mean ∆CCS 95% CI Mean ∆CCS 95% CI

IL-1β * 0.00 0.00, 0.00 107.64 29.24, 186.04 Undef

IL-1Ra 37.05 32.25, 41.85 291.55 132.30, 450.80 7.87

IL-2 4.45 4.16, 4.74 1.95 1.07, 2.83 0.44

IL-6 * -2.20 -6.12, 1.72 2929.10 1492.81, 4365.39 1332.41

IL-7 -1.45 -3.31, 0.41 58.05 44.23, 71.87 41.03

IL-8 -163.50 -338.92, 11.92 8277.50 8192.24, 8362.76 51.63

IL-9 0.05 0.05, 0.05 3.20 1.93, 4.47 64.00

IL-10 8.85 6.60, 11.10 9727.89 9702.41, 9753.37 1099.20

IL-12p40 2.55 0.30, 4.80 465.45 38.66, 892.24 182.53

IL-12p70 1.10 0.90, 1.30 10.05 6.03, 14.07 9.14

IL-13 0.95 0.85, 1.05 4.70 1.76, 7.64 4.95
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IL-15 5.90 4.53, 7.27 19.55 14.94, 24.16 3.31

EGF -0.35 -2.60, 1.90 12.17 8.50, 15.84 35.77

Eotaxin 1.35 0.27, 2.43 27.05 21.86, 32.24 20.04

FGF-2 1.35 -0.12, 2.82 13.45 10.80, 16.10 9.96

G-CSF * 7.15 2.54, 11.76 8030.45 1601.16, 14459.74 1123.14

GM-CSF # 5.20 -0.68, 11.08 83.55 30.34, 136.76 16.07

GRO 28.30 28.10, 28.50 4738.70 3277.52, 6199.88 167.45

IFN-α2 7.35 5.10, 9.60 26.40 25.81, 26.99 3.59

IFN-γ # 2.10 0.92, 3.28 102.70 32.34, 173.06 48.90

MCP-1 # 257.00 241.32, 272.68 -8020.50 -10885.04, -5155.96 32.21

MCP-3 40.80 32.18, 49.42 10.45 -1.60, 22.50 0.26

MDC x 5001.50 4822.16, 5180.84 1046.50 590.80, 1502.20 0.21

MIP-1α 20.25 14.86, 25.64 242.70 78.45, 406.95 11.99

MIP-1β 20.40 11.58, 29.22 140.80 75.14, 206.46 6.90

TGF-α 4.80 4.41, 5.19 34.90 21.18, 48.62 7.27

TNF-α 2.50 2.30, 2.70 1539.65 552.30, 2527.00 615.86

VEGF 13.15 11.29, 15.01 6746.25 3471.38, 10021.12 513.02

* Change seen in all macrophage types; # Change seen in this macrophage type only; x Change also seen in M1 macrophages; Undef = undefined; Cytokine levels for
days 8 and 11 are shown in Supplemental Table 3

Table 3: Cytokines differentially secreted by MΦ macrophages in response to VSL#3.

Results and Discussion

Purity of isolated cells
The percentage of cells positive for the monocyte/macrophage

marker CD14 and the T lymphocyte marker CD3 in PBMCs obtained
by density gradient centrifugation (Figure 1B), monocytes isolated
using CD14 microbeads (Figure 1C), and adherent monocyte-derived
macrophages (Figure 1D) was determined by flow cytometry. The
percentage of CD14+ cells increased while the percentage of CD3+ cells
decreased with each purification step. PBMCs were ~50% CD3+ and ≤
20% CD14+, isolated monocytes were < 3% CD3+ and ≥ 92% CD14+,
and monocyte-derived macrophages were 0% CD3+ and > 97%
CD14+. Forward and side-scatter analysis indicates that the CD14-

cells in samples from monocyte-derived macrophages have properties
consistent with dead cells and/or debris. We are therefore confident
that our subsequent observations result in fact from the behavior of
macrophages and not from other contaminating PBMCs.

Effect of VSL#3 on macrophage morphology
Exposure to VSL#3 led to pronounced morphological changes in

M1, M2, and MΦ macrophages, which largely depended on the initial
polarization status (Figure 2). Exposure of M1 macrophages, which
under our experimental conditions formed granuloma-like aggregates
of round/oval cells with few fibroblast-like and loose round/oval cells,
to VSL#3 significantly increased the percentage of loose round/oval

cells and decreased the percentage of round/oval cells in clusters
without changing the percentage of fibroblast-like cells (Figures 2A,2B,
2G). For M2 macrophages, treatment with VSL#3 significantly
increased the proportion of fibroblast-like cells (p<0.001), which was
the largest observed for this morphological subset, and significantly
decreased proportion of loose round/oval cells (p<0.001) when
compared to untreated M2 macrophages (Figures 2C,2D,2G).
Additionally, VSL#3 led to a significant increase in the length of M2
macrophages with a fibroblast-like morphology (p<0.001; Figure 2H).
Treating MΦ macrophages with VSL#3 led to a significant increase in
loose round/oval cells (p<0.01) with a concomitant reduction in the
percentage (p<0.05) and length (p<0.05) of fibroblast-like cells as
compared to untreated MΦ macrophages (Figure 2E-2H). Few reports
have described the morphology of in vitro-derived M1 and M2
macrophages. Rey-Giraud et al. found morphological characteristics
similar to ours for macrophages generated by 6-day culture in RPMI
with 10% FBS and either GM-CSF (M1) or M-CSF (M2): M1
macrophages were mostly round and oval cells and M2 macrophages
were mostly fibroblast-like [27]. Edin et al. also found similar patterns
when using conditions more akin to those used in the present study
[28]. Neither of these two studies quantified the morphological
subtypes of cells, making our study the first to do so. Our study is also
the first to evaluate the effect of a probiotic on the morphology of
macrophages. McWhorter et al. described a relationship between
macrophage morphology and phenotype in which increasing
elongation augments M2 phenotype [29], suggesting that our observed
VSL#3-induced morphological changes in macrophages may indicate
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phenotypic alterations. In light of the studies by Rey-Giraud et al.,
Edin et al., and McWhorter et al., our observed changes seem to
suggest the following: first, that the proinflammatory phenotype of M1
macrophages seems relatively unchanged by VSL#3 as the cells
maintained a round/oval shape, even when changing from a clustered
to a loose arrangement; second, that the anti-inflammatory phenotype
of M2 macrophages is augmented by VSL#3 given that the probiotic
increased both the number and length of cells with a fibroblast-like
shape; and third, that MΦ were turned proinflammatory by exposure
to VSL#3. To confirm whether these phenotypic alterations were
indeed manifested by the different macrophages, we next measured
cytokine and chemokine secretion in supernatants.

Effect of VSL#3 on macrophage cytokine and chemokine
secretion

VSL#3 exposure also produced profound polarization-dependent
changes in cytokine and chemokine secretion by macrophages. We
first set out to determine the effect of VSL#3 on M1 and M2
macrophage secretion of the acute-phase cytokines IL-1β, IL-6, and
TNF-α, the M1 cytokines IL-12p70 and IL-23, and the M2 cytokines
IL-4 and IL-10 by way of a 7-plex assay (Figure 3). M1 macrophages
exposed to VSL#3 secreted significantly higher levels of IL-6, IL-10,
and IL-23 than their untreated counterparts (Figures 3B,3C,3E).
Notably, levels of IL-12p70 did not change in response to the probiotic
(Figure 3D). IL-4 was not detected in supernatant from any M1
macrophages, and its levels exceeded the limits of detection for M2
macrophages (data not shown). VSL#3 exposure increased M2
macrophage secretion of IL-1β and IL-10 (Figure 3A and 3C).

After establishing that VSL#3 induced changes in the secretion of
certain cytokines by polarized macrophages, we next wanted to better
characterize the effect of VSL#3 on the secretion profile of both
polarized and unpolarized macrophages. For this, we employed a
multiplex assay to assess VSL#3-induced changes on the levels of 38
cytokines and chemokines. The quality control values for 3 of the 38
cytokines were outside of the appropriate range and were thus
excluded from any further analysis. Our analyses revealed that VSL#3
significantly altered the secretion of 32 cytokines by the three
macrophage types under study. The cytokines with significant changes
in secretion, as determined by the described method, are shown for
M1, M2, and MΦ macrophages in Tables 1-3, respectively. The levels
on days 8 and 11 for cytokines in Tables 1-3 are listed in Supplemental
Tables 1-3, respectively. All three types of macrophages secreted
higher levels of IL-1β, IL-6, and G-CSF in response to VSL#3. Changes
in the secretion of the remaining cytokines/chemokines were exclusive
to either M1, M2, or MΦ macrophages or a combination therein.
Therefore, changes for the majority of the cytokines/chemokines were
dependent on the macrophages’ initial polarization state. Only treated
M1 macrophages increased secretion of IL-1α and IL-4 and decreased
secretion of IL-17A. Increased fractalkine secretion was seen only in
VSL#3-treated M2 macrophages. MΦ macrophages were the only ones
to secrete higher levels of GM-CSF and IFN-γ and lower levels of
MCP-1 in response to VSL#3. Treatment with the probiotic decreased
MDC secretion by both M1 and MΦ macrophages. Expression
changes of the remaining 21 cytokines were seen in M2 and MΦ
macrophages. Of note, increased secretion of the M2 cytokines IL-1Ra,
IL-10, and IL-13 and the pro-healing factors EGF, FGF-2, TGF-α, and
VEGF was observed for both M2 and MΦ macrophages. These two
types of macrophages also secreted higher levels of the pro-
inflammatory cytokines IL-12 (p40 & p70) and TNF-α and

chemokines IL-8, eotaxin, GRO, and MIP-1 (α & β) after exposure to
VSL#3.

Figure 1: Experimental design and purity isolated cells. (A)
Monocytes isolated from the blood of healthy donors were
differentiated into macrophages by 7-day culture with M-CSF, and
the resulting macrophages were cultured for 18 hours with
polarizing factors or medium and then for three days with or
without the probiotic VSL#3. (B-D) PBMC and monocyte samples
were taken on day 0 after Ficoll-Paque centrifugation and magnetic
bead purification, respectively, while the macrophage sample was
taken from adhered cells on day 7. Cells were stained with anti-
CD3-PerCP and anti-CD14-FITC antibodies and analyzed on a
FACSAria flow cytometer. Representative graphs are shown.
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Figure 2: VSL#3-induced changes in macrophage morphology. (A-D) Representative micrographs illustrating the morphology of untreated
(A,C,E) and treated (B,D,F) M1, M2, and MΦ macrophages at day 11 of the protocol. Treatment consisted of exposure to 3.33x107 CFU of the
probiotic mixture VSL#3 for 3 days. Scale bar = 0.25 mm in A and applies to A-F. (G) Quantification of cells demonstrating different
morphological characteristics. Cells were quantified by using the ‘cell counter’ and ‘analyze particles’ features of Image J. Two high-powered
fields (mm2) were counted per well, one in the center of the well and another in the periphery. Data represents the mean ± SE of 10-12 counts
per treatment, half in the center and half in the periphery. (H) Length of the fibroblast-like macrophages quantified in G, measured with
ImageJ. Data were analyzed using one-way ANOVA and Tukey’s multiple comparisons test. *p<0.05, ***p<0.001 vs M2+VSL#3; ##p<0.01 vs
MΦ; †††p<0.001 vs M1, xp<0.05, xxp<0.01 vs MΦ+VSL#3.

Overall, the baseline cytokine and chemokine secretion patterns we
obtained for human M1 and M2 macrophages were consistent with
those previously reported by Rey-Giraud et al. [27]. Of the 30 analytes
reported in their supplementary data, 24 coincided with those
measured in our study. For those analytes that coincided, secretion
patterns were discordant only for EGF, IL-1Ra, and TGF-α for which
we found higher secretion by M1 macrophages, but Rey-Giraud et al.
found higher secretion by M2 macrophages. We find it interesting that
in both studies M1 macrophage secretion of IL-10 and VEGF was
higher than that of M2 macrophages, especially since these two soluble
factors are generally regarded as characteristic for M2 macrophages.
Although some level of IL-10 secretion is expected in M1 macrophages
as a result of NF-κB activation [30], it is nevertheless surprising that
IL-10 secretion in M1 macrophages surpasses that of M2
macrophages.

Several studies have examined the effect of VSL#3 on dendritic cell
secretion of IL-10 and IL-12p70 [11-13]. Hart et al. reported
intracellular levels of IL-10 to be increased and of IL-12p70 to be
decreased in human dendritic cells from peripheral blood and
intestinal lamina propria [13]. Studies by Drakes et al. in mice bone
marrow-derived dendritic cells showed that VSL#3 induced higher
levels of IL-10 and these greatly surpassed levels of IL-12p70, which

were increased within the first day of culture but subsequently
decreased [11]. Finally, Gad et al. reported that various concentrations
of VSL#3 led to higher secretion of IL-12p70 than IL-10 within a 24-
hour period, but they did not look at later time points [12]. Gut
bacteria interact directly with macrophages given that the gut
microflora that normally penetrate the epithelial barrier are cleared
mostly by macrophages [26] and that resident intestinal macrophages
have been shown to extend transepithelial dendrites into the lumen of
the gut [31,32] and to contribute to oral tolerance by transferring
antigens to dendritic cells through gap junctions [33]. Therefore, we
decided to examine the direct effect of VSL#3 on macrophages.

We chose to examine VSL#3 induced changes on cytokine secretion
after a three-day incubation for several reasons. First, we believed that
changes occurring over several days might be more representative of
the events that unfold when probiotics are ingested. Second, we
reasoned that leukocyte behavior 72 hours after stimulation would be
more informative in terms of an immune response because this is the
time period that is generally regarded as necessary for an adaptive
immune response to take place. Third, it takes days rather than hours
for signaling-induced changes in transcription to result in altered
protein synthesis and secretion.
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Figure 3: VSL#3-induced changes in cytokine secretion by M1 and M2 macrophages. Levels of IL-1β (A), IL-6 (B), IL-10 (C), IL-12p70 (D),
IL-23 (E), and TNF-α (F) were measured using a multiplex assay. Samples of supernatant were taken after 18-hour exposure to polarizing
factors (day 8) and subsequent 3-day culture in the presence or absence of the probiotic mixture VSL#3 (day 11). Dashed lines indicate that
levels were below or above the limits of detection. Each data point represents the mean ± SE of two pooled samples. * denotes a statistically
significant difference in the mean change in cytokine and chemokine secretion (∆CCS) of the treated macrophage vs. the untreated
macrophage type, calculated as indicated in the methods section.

Exposure to the probiotic led to a mixed phenotype whose tendency
towards inflammation depended on the macrophages’ polarization
status. VSL#3 did not induce a strictly proinflammatory or anti-
inflammatory response in polarized and unpolarized macrophages,
contrary to our hypothesis. VSL#3-exposed M1 macrophages
maintained a predominantly proinflammatory phenotype as evidenced
by sustained levels of IL-12 secretion and increased secretion of

inflammatory cytokines such as IL-1β, IL-6, IL-23, and G-CSF. While
IL-10 was over the detection limit in the second multiplex, the results
from the first multiplex clearly show that IL-10 secretion by M1
macrophages increased upon treatment with VSL#3. The fact that
levels of TNF-α for M1 macrophages exceeded the limits of detection
of both multiplex assays regardless of VSL#3 treatment confirms that
these macrophages are indeed proinflammatory. On the other hand,
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M2 and MΦ macrophages exposed to VSL#3 secrete increased levels of
anti-inflammatory and pro-healing factors in addition to the
inflammatory factors, thus seemingly adopting a more balanced
phenotype. The differential effect of VSL#3 on M1 and M2
macrophages could perhaps explain why VSL#3 and other probiotics
have been more effective to date in patients with UC than in patients
with CD [4,5]. The increase in proinflammatory cytokines might
aggravate inflammation in CD by fueling the Th1 response, but might
improve the condition for UC patients by shifting the balance away
from a Th2 response. The hybrid phenotype induced in M2 and MΦ
macrophages by VSL#3 resembles the regulatory, or type II, (M2b)
macrophage, a subtype of M2 macrophages characterized by secretion
of high levels of the anti-inflammatory cytokine IL-10 and the pro-
inflammatory cytokines IL-1β, IL-6, and TNF-α, while secreting lower
levels of IL-12 [15]. Although this type of macrophage was initially
thought to result from stimulation with immune complexes and toll-
like receptor ligands, recent reports indicate that M2b macrophages
may also be induced by inflammatory clearance of apoptotic
neutrophils [34] and dectin-1 activation by ligands such as zymozan
[35]. Further investigation is needed to determine if probiotics and
possibly commensal flora can also trigger an M2b phenotype.

In conclusion, we have shown for the first time the direct effect of
VSL#3 on human macrophage morphology and secretion. Specifically,
our study demonstrates that VSL#3 has distinct effects on both
polarized M1 and M2 and unpolarized MΦ macrophages. Our results
emphasize the need for studying the effects of potential therapeutic
strategies for IBD in the context of the two main forms of this
condition, UC and CD.
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