
Sfiridis, J Stock Forex Trad 2015, 4:1 
DOI: 10.4172/2168-9458.1000141

Research Article Open Access

Volume 4 • Issue 1 • 1000141J Stock Forex Trad
ISSN: 2168-9458 JSFT, an open access journal

The Predictive Power of S&P 500 Option Prices and the Stock Market 
Crash of 2008-2009
James M Sfiridis*
Associate Professor of Finance, Department of Finance, Box 1041F, University of Connecticut, Storrs, CT. 06269-1041, USA 

Abstract
Option market prices have often been regarded as a window on investor sentiment about the future price behaviour 

of the underlying asset. Such market prices can be different than their corresponding model prices, a phenomenon 
revealed by implied volatility plots exhibiting “smiles” or “smirks”. Using the unique capabilities of Bayesian-based 
empirical methods, a four-moment risk-neutral specification is determined that largely eliminates market and model 
price differences. The risk-neutral density derived for a sample of S&P 500 call option prices during 2008-2009 uncovers 
significant market under-pricing reinforced by anomalous volatility skews that reveal bearish investor sentiment clearly 
signalling the pending equity market collapse.
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Introduction
The seminal work of Black and Scholes [1], henceforth abbreviated 

B/S, established an effective pricing mechanism for contingent-claim 
securities based on assumed log normally distributed security returns. 
However, implied volatilities or IV’s systematically greater than their 
corresponding B/S volatilities for a cross-section of call options of 
similar maturity result in the well-known volatility “smile” or “smirk”1 
that raises serious questions about the validity of the distributional 
assumptions underlying the B/S model. For example, the “crash-o-
phobia” phenomenon (Rubinstein [2]; Foresi and Wu [3]) alludes to the 
strong demand for out-of-the-money or OTM put options on the S&P 
500 index to hedge against market crashes, resulting in price increases 
seen as implied volatility “smirks”. Bates [4] looking at the 1987 market 
crash, states that OTM S&P 500 puts as crash insurance vehicles were 
unusually expensive relative to OTM calls. This high price could not be 
explained by standard option pricing models with positively skewed 
distributions, such as B/S, constant elasticity of variance or GARCH. 

If option prices reflect investor expectations of future market 
performance, then the possibility arises of option market prices that 
are both greater than and less than their corresponding B/S prices, not 
just greater than B/S prices as implied by volatility “smiles” or “smirks”. 
Put another way, the expensive OTM S&P 500 put options used to 
hedge market crashes as discussed above should have call option 
counterparts, i.e., in-the-money (ITM) S&P 500 calls having the same 
strike prices, that are unusually cheap relative to B/S prices reflecting 
an expected decline in the future market price of the underlying asset2. 
In the historical graph of S&P 500 index levels shown in Figure 1 for the 
five-year period from 2008 through 2012, the question is whether S&P 
500 call option market prices during mid-2008 signalled the extended 
steep decline in the index level that began in the fall of 2008? Among 
the reasons contributing to such poor market performance were the 
Lehman Brothers chapter 11 bankruptcy filing on September 15th, the 
buyout of Merrill Lynch by Bank of America that same September, 
the lending of $85 billion to AIG on September 17th, and Fannie Mae 
and Freddie Mac being put into conservatorship on September 7th. 

The S&P 500 later hit a bottom during the first half of 2009, recovered 
slightly, but remained low through the remainder of 2009. Such index 
price behaviour might be signalled by greatly reduced call option 
market prices for observation dates just prior to fall, 2008, relative to 
corresponding model prices utilizing only historical price data. Model 
prices that closely approximate the low market prices result from an 
overall decrease in implied or forward-looking return volatility relative 
to that derived only from past returns, resulting in IV plots lying below 
the constant B/S standard deviation that may not exhibit familiar IV 
“smiles” or “smirks”. Additionally, the components of such implied 
risk-neutral return volatility, specifically the implied higher moments 
of scale, skewness and kurtosis, can signal investor sentiment causing 
such anomalous price behaviour.

Determining these higher moments requires finding the ex-ante or 
implied risk-neutral return probability density functions (pdf’s) that 
provide call option model prices closely approximating corresponding 
market prices. I do this for the S&P 500 market index by first estimating 

1The symmetric volatility “smile” is more commonly seen for individual securities 
whereas the asymmetric volatility “smirk” is associated with equity indices.
2Such option price behavior may be interpreted as a violation of put-call parity which 
says that a more expensive put should be accompanied by a more expensive call. 
However, there is recent evidence that significant deviations from put-call parity do 
occur (Cremers and Weinbaum, [5]; Garleanu, Pedersen and Poteshman, 2009; 
Atilgan, Such price deviations occur due to the trading activity of informed investors 
as upcoming information events approach.

Figure 1: S&P 500 index level for January, 2008, through December, 2012.
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the model’s likelihood function based on historical index return data, 
then determine the ex post or historical risk-neutral pdf by adjusting its 
location parameter and then proceed to the ex-ante or implied version 
by the additional incorporation of forward-looking S&P 500 call 
option market prices to adjust the higher moments of scale, skewness 
and kurtosis to determine their implied counterparts. The critical 
starting point is estimation of the ex post or data-based likelihood 
function using Bayesian-based Markov chain Monte Carlo (MCMC) 
methods which offer a unique and valuable capability. MCMC output 
giving the marginal posterior distributions of each of the pdf’s four 
moment parameters as a large number of draws or iterates from such 
distributions are conditional only on the data. Each higher moment 
of scale, skewness and kurtosis defining overall return volatility is 
independent and, thus, such overall volatility is effectively partitioned 
among these three higher moments. Once the first moment of location, 
i.e., the mode, is found relative to the risk-free interest rate, the sought-
after ex ante or implied risk-neutral specification is that density 
having specific higher moment values found from MCMC output that 
minimizes the difference between model and market prices. These 
specific implied higher moment values offer a unique perspective on 
investor sentiment about future market performance.  

Previous work by, for example, Dennis and Mayhew [6], Bollen 
and Whaley [7], Garleanu et al. [8] and Friesen et al. [9] document the 
role played by the trading activity of informed investors in influencing 
only the type and extent of implied skewness that leads to acceptable 
prediction of upcoming information events. The three implied higher 
moments in this paper, by effectively partitioning overall implied or 
risk-neutral volatility, extends our ability to more effectively reveal 
investor sentiment by considering each higher moment’s independent 
contribution to such volatility. 

Comparison of the ex post physical and the ex-ante return densities 
reveal distinct differences between the two driven mainly by increased 
skewness as the 2008-2009 equity market collapse approached, 
resulting in familiar IV “smirks”. However, by mid-2008, just before 
the market collapse of late 2008 and 2009, there were significant 
decreases in overall implied volatility relative to historically-based B/S 
volatility caused by extensive market underpricing. The familiar IV 
“smirks” were replaced by anomalous IV “frowns”, but only for the 
ex-ante or implied densities incorporating forward-looking call option 
market prices.  

This paper is organized as follows. Section 2 is a review of relevant 
option pricing literature. Section 3 gives data sources, presents a short 
summary of the B/S methodology to price call options and then reviews 
the four-moment likelihood function and Bayesian-based MCMC 
methods to determine the data-based return specification. Recovery 
of implied or risk-neutral densities incorporating the information 
contained in option market prices and expected implied volatility plots 
are also discussed. Section 4 presents empirical results investigating 
whether call option prices were in fact signalling the equity market 
collapse of 2008-09. Implied volatilities derived from B/S, model and 
market price differences supplement the findings. Section 5 summarizes 
and concludes.

Literature Review
The implied risk-neutral distribution

Early research in option pricing largely involved extending the 
B/S (1973) framework. Brennan [10] applies discrete time models to 
the pricing of contingent claim securities to circumvent the problem 
with the Breeden and Litzenberger [11] analysis that prices contingent-

claim securities in a continuous-time framework. To accomplish risk 
neutrality in discrete time the location parameter or mode of the 
proposed risk-neutral pdf must be shifted so that the mean equals the 
risk-free interest rate. Although attention is restricted to the lognormal 
density, Brennan states that his techniques are applicable to any other 
probability distribution for which the relevant density functions exist.

Ait-Sahalia et al. [12] and Bakshi et al. [13] consider the higher 
statistical moments of skewness and kurtosis in formulating the 
implied risk-neutral distribution and the consequent effect on option 
pricing. A crucial insight is that the physical ex post and implied risk-
neutral distributions can be quite different. Also, by comparing two 
risk-adjusted densities rather than a risk-adjusted density from option 
prices to an unadjusted density from index returns, assumptions about 
investor preferences are avoided, i.e., investor utility functions as 
required by Brennan [10] to go to a discrete time framework are no 
longer necessary. Only the drift must be adjusted for both densities to 
reflect the risk-neutral interest rate.

Research results to date point to an implied risk-neutral pdf 
exhibiting negative skewness and positive kurtosis, i.e., “fat tails”, for 
equity index returns. Jackwerth and Rubinstein [14] and Bates [15] 
establish the historical record on risk-neutral specifications for S&P 
500 index options. Prior to the October, 1987 stock market crash excess 
levels of skewness and kurtosis did not exist. However, things markedly 
changed after 1987 and by the end of 1988 through 1993 the implied 
risk-neutral densities consistently showed excess levels of kurtosis and 
negative skewness. Bates finds evidence of negative skewness at least 
a year prior to the October, 1987 crash that was previously absent. 
Such negative skewness could not be explained by any of the standard 
option pricing models that assume positively skewed risk-neutral 
densities. Figlewski [16] substantiates this by concluding that though 
“microstructure noise” makes fitting the risk-neutral densities very 
difficult, they are quite different from the lognormal densities assumed 
in the B/S framework. Except for historical periods containing the 
1987 crash, option-implied volatility is almost always biased upward 
from prior historical realizations and the familiar form of the volatility 
“smile” or “smirk” results.

Much of the research in option pricing involves investigation 
of the difference between model and market prices for contingent 
claim securities due to misspecification of the implied risk-neutral 
pdf of the underlying asset. Jackwerth and Rubinstein [14] consider 
various minimization criteria to determine the implied risk-neutral 
specification from historically observed option prices. They consider 
four methods to recover it and find that with any option maturity date 
having at least eight strike prices, all four methods are equivalent. In 
this paper an approach similar to Stutzer’s maximum entropy function 
(1996) is implemented that adjusts the ex post risk-neutral pdf to 
minimize the absolute price difference between model-derived and 
actual market prices. 

Lim, Martin and Martin [17] and Martin, Forbes and Martin [18], 
henceforth known as LMM and MFM respectively, have extensively 
investigated appropriate implied risk-neutral pdf’s to model S&P 500 
call option market prices. LMM achieve significant gains from pricing 
higher order moments in stock returns, particularly skewness, alleviating 
the problem of volatility skews and allowing the pricing of options across 
a full spectrum of moneyness, defined as the ratio of strike price to the 
underlying’s market price. MFM find that the best model to approximate 
S&P 500 call option market prices is one having constant volatility and 
significant non-normality, specifically excess levels of kurtosis and negative 
skewness as seen for daily S&P 500 index return data. 
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The second parametric method that seeks to find a more flexible 
distribution by adding additional parameters to the two-parameter 
B/S normal specification is pursued in this paper. An appropriate 
statistical specification for the return-generating process is a necessary 
first step to accomplish such a goal. The likelihood function introduced 
by Fernandez and Steel [24], henceforth known as FS, is an excellent 
candidate for such a task, summarizing features of the data using the 
four moments of the required density as
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Where the data consists of a single vector of daily index returns, 
or ri, i =1,…,N. This is an extension of the familiar normal likelihood 
where in addition to the location and scale parameters as given by µ 
and σ for the normal case, the parameter vector is supplemented by λ 
and γ to introduce kurtosis and skewness respectively. These last two 
unobservable parameters are elicited from the MCMC analysis that 
estimates the model. In all cases, diffuse priors insure that results are 
primarily driven by the data.

The FS likelihood function is estimated using MCMC methods 
because of their unique capabilities. First, MCMC output as a Markov 
chain providing a large number of parameter values gives a complete 
description of the parameter. Second, and most important, the Markov 
chains represent draws from the parameters’ marginal posterior 
distributions, meaning that parameter values are contingent only on 
the data. Thus, overall volatility is effectively partitioned among the 
three components of scale, skewness and kurtosis. 

Data augmentation (Tanner and Wong [25]) is used to replicate 
the Student-t representation of kurtosis by a scale mixture of normals, 
giving a sampling density of
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Where, fG is a gamma density specified by degrees of freedom, ν. 
Thus, each observation ri, i = 1,…., N has a mixing parameter λi, i = 1,…, 
N as defined by theν  hyperparameter. The  mixing parameter allows 
replication of a Student-t distribution having less than thirty degrees 
of freedom and, hence, accommodates various levels of leptokurtosis 
or “fat tails”. The γ  skewness parameter controls symmetry, allocating 
probability mass to each side of the distribution’s mode. Values of 
γ>1.0 produce positive skewness or skewing to the right and γ<1.0 
produces negative skewness or skewing to the left. Values of γ and λ 
equal to unity provide the familiar normal likelihood4

The Bayesian model is defined as

)()()()()(),,,r(h)r,,,,(g 222 νπνλπγπσπµπλγσµ∝νλγσµ  (3)

where the joint posterior distribution of the model parameters is 
proportional to the likelihood function times the parameters’ prior 
distributions and the right side of the equation is used to formulate 
the full conditional distribution for each model parameter, defined 
as that distribution for the parameter conditional on the other model 
parameters and the data. After repeated iterative re-sampling from the 
full conditional distribution using MCMC methods, such as Gibbs 
sampling or the more general Metropolis-Hastings (M-H) algorithm, 

The implied risk-neutral distribution and implied volatility 

The ability of option prices to signal the future price direction 
of the underlying asset contradicts finance theory that options are 
redundant assets not conveying additional price information on the 
underlying asset and the no-arbitrage framework underlying put-
call parity. However, surprisingly there has been a plethora of recent 
research that does exactly that (Dennis and Mayhew [19]; Bollen 
and Whaley [7]; Buraschi and Jiltsov [20]; Bing Han [21]; Garleanu, 
Pedersen and Poteshman [8]; Cremers and Weinbaum [5]; Friesen, 
Zhang and Zorn [9]). Researchers have generally considered two 
approaches; first, the occurrence of varying implied volatility spreads 
for matcheduts and calls as violations of put-call parity and, second, the 
degree of skewness of the implied risk-neutral pdf as indicated by the 
slope of the IV function that serves as a predictive mechanism. Such IV 
behavior results from option prices influenced by the trading activity 
of informed investors as information is received about upcoming 
information events. For example, this is termed “net buying pressure” 
by Bollen and Whaley or “demand pressure” by Garleanu et al. [8]. 
Bing Han [21] finds that more negative risk-neutral skewness for the 
S&P 500 index is related to more bearish market sentiment. 

If the three moments defining overall risk-neutral return volatility 
are assumed to vary independently, then different volatility skew shapes 
and a wide range of implied risk-neutral pdf’s are possible, not only 
from changes in skewness, but from changes of any or all of the three 
volatility components. For example, LMM [22] reveal the existence 
of volatility “frowns” for currency options, i.e., underpricing of both 
ITM and OTM contracts and over-pricing for ATM contracts, arising 
from tranquil periods when exchange rate movements are relatively 
small, resulting in unconditional empirical return distributions with 
thinner tails than the normal distribution. Thus, for currency options 
the appearance of “frowns” is directly related to a decrease in overall 
implied volatility resulting specifically from a decrease in kurtosis.

Methodology
Data

Price data for the S&P 500 index and S&P 500 index call options and 
risk-free interest rates are obtained from Yahoo Finance, Tradesignals 
and the data files posted on the website of Professor Kenneth French3. 
A year of daily S&P 500 index price data prior to a chosen observation 
date are used to determine the data-based physical return densities. 
Strike prices that are used require that the option was actively traded 
on that date and/or significant open interest exists. This resulted in a 
range of nine to nineteen strike prices for each option series.

The return model and bayesian MCMC estimation

Jackwerth [23] discusses two basic extensions of the lognormal 
distribution to find the implied risk-neutral specification associated 
with a set of European option prices.

They are (1) to find a more flexible parametric distribution or (2) 
to try a non-parametric method. Among the parametric methods are 
expansion methods that start with a basic distribution and then add 
correction terms, generalized distribution methods that add additional 
parameters beyond the two parameters of the normal or lognormal 
distribution and mixture methods that produce new distributions from 
mixtures of simpler ones. 

3I also wish to thank my good friend and colleague, Professor Kenneth Daniels of 
Virginia Commonwealth University, for providing a portion of the historical option 
price data used in this paper.

4A λ=1.0 giving zero kurtosis requires degrees of freedom approximately equal to 
30.



Citation: Sfiridis JM (2015) The Predictive Power of S&P 500 Option Prices and the Stock Market Crash of 2008-2009. J Stock Forex Trad 4: 141. 
doi:10.4172/2168-9458.1000141

Page 4 of 10

Volume 4 • Issue 1 • 1000141J Stock Forex Trad
ISSN: 2168-9458 JSFT, an open access journal

MCMC output as a long Markov chain comprised of candidate 
draws for the model parameter converges to the required marginal 
distribution for that parameter. Sampling-based multidimensional 
integration has been accomplished to determine the required model 
parameter’s marginal distribution. 

For my analysis the Markov chains are all run for 600,000 iterations 
with the last 50,000 iterates retained as draws from the required 
marginal distributions. Of these, every fifth iterate is retained to 
minimize any potential serial correlation, providing Markov chains of 
10,000 iterates each for the subsequent analysis. Such MCMC methods 
now provide a large sample of independent estimates of each model 
parameter, cross-sectionally independent across the parameter vector 
and serially independent within each parameter’s Markov chain. 
The appendix gives specific details about derivations of the sampling 
distributions and implementation of the Bayesian MCMC analysis. 

A quick review of black-scholes option pricing 

A European call option can be priced as today’s expectation of the 
difference between the terminal underlying asset price ST and the strike 
price k. For an equity option

[ ])0,kSmax(Êec T
)tT(rf −= −− 			                (4)

where rf  is the risk-free interest rate and T-t is the option’s time to 
maturity. This is generally represented in terms of the risk-neutral 
probability of the stock price at maturity, or
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Where, additionally g(ST) is the risk-neutral density of the terminal 
stock price. The discretized equivalent of equation (5) is
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Where S0 is the underlying security’s present stock price and 
g(ri) is the stock return’s terminal risk-neutral density. The integral 
in equation (5) is approximated by a summation in equation (6) for 
very large N representing a large number of small discrete ∆ri values 
across a wide range of possible periodic returns. Option prices can now 
be determined for a wide range of g(ri) specifications. A general g(ri) 
density can be estimated from historical return data using equation (1) 
with the mode later adjusted to equate the mean and the risk-free. 

Specifically for B/S, the transformation of lognormal discrete 
returns to their normal continuous-time equivalents by taking the 
natural logarithm of the price relatives allows the normal specification, 
N(d1) and N(d2), to be used, or
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equation (5) for a normal risk-neutral density that, in turn, is equivalent 
to the continuous-time B/S model of equation (7). Following Brennan 
[10], in discrete time the mean of the previous lognormal distribution 

must equal the risk-free rate in order to implement equation (6) using 
a risk-neutral lognormal density, g(ri). For such a positively skewed 
risk-neutral specification the mode is not equal to the mean. Hence, 
the 0.5σ2 (T-t) adjustment is used, giving the mode in equation (8) as 

)tT(5.0)tT(r 2
f −σ−− . In general, pricing call options in a discrete 

setting using an asymmetric or non-normal risk-neutral density 
requires first setting the mean of the data-based density equal to the 
risk-free rate and then finding the resulting mode to realize the new 
ex post data-based risk-neutral density. This relocation of the data-
based density to meet the requirement that the mean equals the risk-
free rate in order to achieve risk-neutrality is a function of the density’s 
asymmetry and is termed a “location shift” in this paper. The direction 
of the location shift is a function of the type of asymmetry or skewness, 
positive or negative, found for the data-based density. For example, the 
location shift for the positively skewed lognormal distribution is -0.5σ2 
(T-t), a subtraction from the risk-free rate that shifts the distribution to 
the left and gives the mode shown in equation (8).

Determining the higher moments of the implied risk-neutral 
distribution

Now that the location parameter for the sought-after implied 
risk-neutral density has been found, “adjusted” values of the higher 
moments must be determined from their MCMC data-based marginal 
posterior distributions. This adjustment that gives “implied” higher 
moments is accomplished by incorporating call option prices on the 
S&P 500 index as a proxy for expected market performance5. Jackwerth 
and Rubinstein [14] discuss incorporation of option market prices into 
the determination of an implied risk-neutral distribution that produces 
near model and market price equivalency. Their objective decision 
criterion is that combination of parameters defining the risk-neutral 
specification that minimizes the cumulative absolute price difference 
between proposed model and actual market prices across all strike 
prices for a call option series of a given maturity. This cumulative 
absolute deviation (CAD) is defined as

∑
=

−=
s

ii

N

1i
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where Ns designates the number of strike prices, i,.…,S, for an option 
price series of given maturity, Pmodi is the model or intrinsic price from 
equation (6) for a specific option strike price i and Pmkti is the actual 
market price of the same option. 

As discussed previously each parameter’s marginal posterior 
distribution given by its respective Markov chain is independent, being 
contingent only on the data. Thus, candidates to determine new model 
prices that closely approximate market prices come from independent 
combinations of the large number of draws comprising each higher 
moment parameter’s Markov chain. The optimum combination is 
assumed to lie within the wide range of the parameters’ Markov chains. 
As such, MCMC output provides a large number of candidate values of 
each implied higher moment parameter and is a necessary step to then 
determine specific implied higher moment estimates of the implied 
risk-neutral distribution. Implementation involves repetitive sampling 
from all iterates comprising the parameters’ Markov chains. The 
requirement that the risk-free interest rate is equal to the mean makes 
a new location shift necessary for each newly proposed risk-neutral 
specification. The expected value of the CAD is zero, but pricing errors 
or deviations between implied model and market prices may reflect 
non-systematic effects or market microstructure noise as discussed by 

5Of course, a similar analysis could be conducted for put options on the market 
proxy.
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Figlewski [16] that cannot be captured by the parametric risk-neutral 
specification.

Further thoughts on implied risk-neutrality and implied 
volatility 

Bates [4] and Bing Han [21] show that implied negative skewness 
results in a volatility “smirk” with increased negative skewness giving 
a steeper “smirk” and indicating greater bear market sentiment 
However, this may only address part of the story of implied volatility 
as a signaling mechanism of future market direction. My simulations 
(not shown here) indicate that both positive and negative skewness 
result in volatility “smirks”. IV plots reveal that they lie above the B/S 
standard deviation regardless of the sign of such skewness. The greater 
its magnitude, the steeper will be the slope of the resulting IV “smirk”. 
In both cases, excess kurtosis was present during the simulations.

If familiar IV “smirks” normally occurs, what are the full range 
of possibilities for the IV plot and the implied risk-neutral density as 
an information event approaches, especially a major one such as an 
anticipated equity market “crash”? For example, increased implied 
risk-neutral market return volatility might be initially expected as 
market uncertainty increases prior to a major information event. If 
such uncertainty is later even partially resolved and it does not favor the 
market, i.e., a bear market looms on the horizon, S&P 500 call option 
prices should fall, resulting in a decrease in overall implied volatility. IV 
plot location could change, now lying below a B/S standard deviation 
based on a previous period of very volatile market return data, as well 
as IV plot shapes.

Empirical Results
Implementation

Model prices are generated for the B/S and ex post risk-neutral 
distributions per equations (7) and (6) respectively using daily return 
data for the S&P 500 index for a year prior to an observation date for 
specific option series maturing during the coming year. Additionally, 
ex ante model prices for the option series can be generated from their 
ex post counterparts by the CAD criterion given in equation (9) to 
determine new model prices more closely approximating actual market 
prices. 

Three series of S&P 500 call options for each of five observation 
dates in August of 1999, 2002, 2006, 2007 and 2008 are investigated. 
August, 2008, is chosen as an observation period since it occurs just 
prior to the steep market decline that began in September as shown 
in Figure 1 and discussed previously in the introduction. The specific 
observation date chosen in August was purely arbitrary. The other 
August observation dates for previous years were chosen to maintain 
consistency over the time periods of the study. Tables 1-3 give 
results for the 1999, 2007 and 2008 observation dates6. Each panel of 
each table representing a call option series of specific maturity gives 
statistical parameters for three risk-neutral densities; model 1 - the 
ex post B/S normal density, model 2 - the ex post or data-based non-
normal risk-neutral density, and model 3 - the ex-ante implied risk-
neutral density . Model 3 incorporates MCMC values for the higher 
moments that minimize the CAD after sequentially going through 
all possible combinations of 10,000 sorted draws retained as MCMC 
output for each of these three parameters7.  For each combination of 

parameter values the mode is adjusted to ensure that the mean equals 
the risk-free interest rate. The Markov chains are sorted in order to 
perform Bayesian-based statistical testing of differences between 
respective ex post and ex ante risk-neutral densities. For example, for 
the ex post physical specification the median, i.e., iterate 5000 shown 
in parentheses in the tables, is chosen as the best point estimate of 
each of the three parameters specifying the three higher moments. The 
corresponding parameter value for model 3, the ex ante risk-neutral 
density, also shows an iterate value in parentheses that minimizes 
the CAD. If such an iterate is less than 250 or greater than 9750 out 
of a total of 10,000 iterates retained for each of the higher moments’ 
marginal posterior distributions, then a null hypothesis that the two 
parameters for models 2 and 3 in that panel are equivalent can be 
rejected at a 5% significance level. Similarly, a value greater than 9950 
or less than 50 is a 1% test and a value greater than 9500 and less than 
500 reflects a 10% test. This Bayesian highest posterior density (HPD) 
estimate for the parameter posterior density is analogous to p-values 
used for frequentist hypothesis testing. The tests assume that if models 
2 and 3 have significantly different parameter values specifying a higher 
moment at one of the above confidence levels, then the models as 
given by the corresponding risk-neutral densities are also significantly 
different. Additionally, the CAD quantity per equation (9) measuring 
the cumulative absolute price deviation between the given market and 
each of three model prices is also given in the tables.

Figures 2-4 supplement Tables 1-3 respectively by showing the 
models’ 1-3 IV plots. Model 1, designated ‘B/S’, is simply the B/S 
standard deviation. Model 2 IV’s, designated ‘model’, are based on 
model prices determined from equation (6) using the ex post risk-
neutral pdf. Model 3 IV’s, designated ‘market’, use actual market prices 
that closely approximate prices generated from the ex-ante implied risk 
neutral pdf’s by using the CAD criterion.

Discussion of results

Tables 1-3 show the three risk-neutral density specifications for 
three (1999, 2007 and 2008) of the five observation dates. For all five 
observation dates eleven of the fifteen option series exhibit model 3 
pdf’s that are significantly different than their model 2 counterparts at 
1%, 5% or 10% significance levels due to significant changes in scale, 
kurtosis and/or skewness. Of these, nine are due to significant changes 
in skewness; eight increases in negative skewness and one increase 
in positive skewness, three decreases and one increase in scale and 
one increase in kurtosis. Generally it appears that incorporation of 
option prices as a proxy for investor sentiment about future market 
performance produced significantly different implied risk-neutral 
specifications compared to their data-based ex post counterparts, 
revealing a bearish outlook relative to the recent past specifically due to 
increases in negative skewness, but not necessarily indicating increased 
uncertainty caused by an overall increase in implied risk-neutral 
volatility.  Kurtosis does not play a major role. In all cases model 3 
specifications incorporating market prices significantly reduced CAD 
amounts compared to those of models 1 and 2.

For the 1999 and 2007 observation dates standard deviations 
for models 2 and 3 are not significantly and systematically different 
from each other. However, both sets are systematically less than the 
B/S standard deviations of model 1. This is expected since the B/S 
normality assumption summarizes non-normal return volatility only 
by standard deviation which is inflated by the presence of skewness 
and kurtosis.  However, comparison of models 2 and 3 for the March 
and June, 2009 option series reveals significant increases in negative 
skewness and decreases in standard deviation with unchanged kurtosis. 

6Table 1 and its associated Figure 2 for 1999 are also representative of the 2002 and 
2006 observation dates. Thus, though the 2002 and 2006 are discussed, their tables and 
corresponding figures are omitted.
7This implies that the number of potential combinations is on the order of 1012. 
Implementing various grid search techniques effectively reduced the number of plausible 
combinations.
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Such increases in negative skewness indicate a significant increase in 
investor pessimism about future market performance during the first 
half of 2009 relative to the earlier 2007-2008 historical period. The 
reduced standard deviation is the major reason for a decrease in overall 
implied volatility resulting from low call option market prices. This 
leads to the conclusion that the bearish market outlook is accompanied 
by low uncertainty that such will occur.  

An illustration that this hypothesized decrease in overall return 
does in fact occur is shown in Figure 5. The difference in return 
volatility for the implied risk-neutral densities relative to their B/S 
counterparts is readily seen for the March, 2008 and 2009 option series. 
For the March, 2008 call options the greater implied volatility seen in 
panel (a) results from higher market prices relative to B/S model prices. 
However, in panel (b) the smaller implied risk-neutral return volatility 
relative to that for B/S for March, 2009 results from reduced market 

prices relative to those from B/S.

Radical changes occur for the August, 2009 model 3 implied risk-
neutral specifications compared to its model 2 counterpart as well as 
for the previous March and June, 2009 model 3 densities. The August, 
2009, option series reveals a model 3 specification having an extreme 
decrease in standard deviation accompanying an extreme increase in 
excess kurtosis with a complete absence of skewness. The decrease 
in standard deviation is so large that it is outside the range of values 
provided by the data-based Markov chain. The MCMC output iterates 
are artificially supplemented as indicated by the negative iterate for  
shown in panel C of Figure 3. We now have a symmetric implied risk-
neutral density with greatly reduced standard deviation and very “fat” 
tails. It seems that asymmetric market uncertainty, i.e., “bearishness”, 
has been replaced by symmetric uncertainty due to the large increase 
in kurtosis. Simulation evidence indicates that overall risk-neutral 

Panel A. December 1999 S&P 500 call options. 

                                                                                               σ (%)                                   skewness (γ)                           kurtosis (DF)                                CAD($)

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density 
Model 3: Ex ante implied risk-neutral density 1+

22.27
19.56 (5000) 2∗

16.65 (1201)

1.0
0.94 (5000)

0.56 (1)

30.0
2.42 (5000)

45.24 (8801)

123.86
162.71

8.29
Panel B. March 2000 S&P 500 call options. 
 
                                                                                                σ (%)                                      skewness (γ)                         kurtosis (DF)                              CAD($) 

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density 
Model 3: Ex ante implied risk-neutral density+

22.27
19.56
(5000)
17.75
(2401)

1.0
0.94

(5000)
0.56
(1)

30.0
2.42

(5000)
28.61
(7601)

102.99
155.17

2.48

Panel C. June 2000 S&P 500 call options. 
     

                                                                                                σ(%)                                       skewness (γ)                           kurtosis (DF)                              CAD($) 

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density 
Model 3: Ex ante implied risk-neutral density+

22.27
19.56
(5000)
15.79
(510)

1.0
0.94

(5000)
0.56
(1)

30.0
2.42

(5000)
7.88

(3230)

 92.60
145.82

2.18

Table 1: S&P 500 call option risk-neutral specifications. Ex post risk-neutral density is determined from daily return data for one year preceding the 8/2/1999 observation 
date. The ex-ante implied risk-neutral density is derived from the cross-section of strike prices for a specific option maturity using the CAD criterion, i.e., minimizing the sum 
of the absolute price differences between the model and actual market option prices.

Panel A. December 2007 S&P 500 call options. 

                                                                                                            σ (%)                                      skewness (γ)                        kurtosis (DF)                         CAD($)

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density
Model 3: Ex ante implied risk-neutral density1+

10.43
7.05 (5000) 2∗

8.69 (9350)

1.0
0.89 (5000)
0.642 (191)

30.0
3.79 (5000)
2.43 (2120)

310.95
411.61
142.29

Panel B. March 2008 S&P 500 call options. 

                                                                                                                          σ (%)                                    skewness (γ)                         kurtosis (DF)                        CAD($)

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density
Model 3: Ex ante implied risk-neutral density+

10.43
7.05 (5000)
8.84 (9580)

1.0
0.89 (5000)
0.619 (71)

30.0
3.79 (5000)
2.10 (1320)

226.82
343.25
27.21

Panel C. June 2008 S&P 500 call options.

                                                                                                              σ (%)                                     skewness (γ)                        kurtosis (DF)                       CAD($)

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density
Model 3: Ex ante implied risk-neutral density+

10.43
7.05 (5000)
7.61 (6820)

1.0
0.89 (5000)
1.21 (9790)

30.0
3.79 (5000)
2.75(2920) 

273.47
409.99
74.11

Table 2: S&P 500 call option risk-neutral specifications. Ex post risk-neutral density is determined from daily return data for one year preceding the 8/1/2007 observation 
date. The ex-ante implied risk-neutral density is derived from the cross-section of strike prices for a specific option maturity using the CAD criterion, i.e., minimizing the 
sum of the absolute price differences between the model and actual market option prices.
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(a) Dec 1999 implied volatilities
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(b) March 2000 Implied volatilities
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(c)June 2000 implied volatilities
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Figure 2: Implied volatility for a sample of S&P 500 call options on the 
8/2/1999 observation date. Moneyness is defined as the ratio of strike price to 
market price. Index level=1328.05.

 

 

 

Figure 3: Implied volatility for a sample of S&P 500 call options on 8/1/2007. 
Moneyness is defined as the ratio of strike price to market price. Index 
level=1465.81.

Panel A. December 2007 S&P 500 call options. 

                                                                                                            σ (%)                                      skewness (γ)                        kurtosis (DF)                         CAD($)

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density
Model 3: Ex ante implied risk-neutral density1+

20.87
18.86 (5000)
15.72 (680)

1.0
0.97 (5000)
0.73 (440)

30.0
11.92 (5000)
10.33 (4380)

132.51
160.03
51.00

Panel B. March 2008 S&P 500 call options. 

                                                                                                                          σ (%)                                    skewness (γ)                         kurtosis (DF)                        CAD($)

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density
Model 3: Ex ante implied risk-neutral density+

20.87
18.86 (5000)
15.14 (410)

1.0
0.97 (5000)
0.79 (1170)

30.0
11.92 (5000)
10.37 (4400)

112.19
151.78
40.00

Panel C. June 2008 S&P 500 call options.

                                                                                                              σ (%)                                     skewness (γ)                        kurtosis (DF)                       CAD($)

Model 1: Black-Scholes
Model 2: Ex post physical risk-neutral density
Model 3: Ex ante implied risk-neutral density+

20.87
18.86 (5000)
1.23 (-889)

1.0
0.97 (5000)
1.05 (7770)

30.0
11.92 (5000)
1.85 (271)

1330.98
1418.04

88.57

Table 3: S&P 500 call option risk-neutral specifications. Ex post risk-neutral density is determined from daily return data for one year preceding the 8/1/2008 observation 
date. The ex-ante implied risk-neutral density is derived from the cross-section of strike prices for a specific option maturity using the CAD criterion, i.e., minimizing the 
sum of the absolute price differences between the model and actual market option prices.
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volatility increases are limited by increases in kurtosis8.  Thus, a large 
decrease in standard deviation should dominate an accompanying 
large increase in kurtosis, thus reducing overall implied market 
volatility. However, the presence of such high levels of leptokurtosis 
or “thick tails” indicates a relatively higher probability of “extreme” 
performance, either to the upside or downside. Thus, we might 
conclude that in August, 2008, reduced long-term call option prices 
were generally signaling reduced and directionless overall market 
uncertainty. It seems that long-term investor sentiment revealed a high 
probability of continued market underperformance accompanied by 
the possibility of some surprises along the way. 

IV plots shown in Figures 2-4 for the 1999, 2007 and 2008 
observation dates supplement previously discussed results from Tables 
1-3. Model 2 IV plots all exhibit volatility “smiles” or “smirks” and lie 
above the B/S standard deviation for call options that are in-the-money 
which later may or may not cross the B/S standard deviation line. As 
expected, data-based higher moments that exhibit significant skewness 
and kurtosis have higher model prices than those from B/S in spite of 
reduced standard deviation. The model 3 IV’s for the 1997 and 2007 
observation dates do not present any unexpected surprises, also largely 
exhibiting IV “smirks” that lie above their corresponding B/S standard 
deviations. 

However, the 2009 call option series exhibit anomalous IV plots 
lying below their B/S standard deviations. The IV plots also exhibit 
IV “frowns”, not “smirks”, which largely occur because market prices 
for the in-the-money call options relatively so much lower compared 
to those for the other strike prices result in lower implied IV’s. The 
August, 2009 option series provides the most interesting anomalous 
IV plots. Here a situation presents itself where such extreme relative 
market underpricing occurs that the IV’s approach zero, i.e., market 
prices are so low that B/S equivalent prices cannot be realized, at all 
strike prices.

 Thus, summarizing our findings from Table 3 and Figure 4, by 
mid-2008 call options of varying maturity were underpriced relative 
to historical data-based model prices, such as from Black-Scholes, 
resulting in reduced overall risk-neutral volatility and anomalous 
implied volatility plots. Though such reduced volatility indicated 
reduced overall investor uncertainty, high levels of implied negative 
skewness signaled continuing bearish investor sentiment through the first 
half of 2009. After mid-2009 high levels of negative skewness disappeared. 
Thus, by mid-2008 investor sentiment was of increased certainty that the 
pending market downturn would occur and worsen through the first half 
of 2009. Longer term S&P 500 index call options maturing after mid-2009 
indicated continuing investor certainty that the equity market downturn 
would persist, but with slightly increased probability that “extreme” 
market performance could occur, either up or down.

Summary and Conclusions
Can option prices give insight into investor expectations, thus 

 

 
 

 
 

Figure 4: Implied volatility for a sample of S&P 500 call options on 8/1/2008. 
Moneyness is defined as the ratio of strike price to market price. Index 
level=1260.31.
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Figure 5: An Illustration of Implied Risk-Neutral Probability Density Functions 
for Two  S&P 500 Call Option Series. The difference in overall dispersion 
between the implied pdf’s and their respective Black-Scholes counterparts is 
readily obvious and results in different IV curves.
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providing some indication of future market performance? Using S&P 
500 index return data and call option prices to derive the implied risk-
neutral return distribution, the answer is yes. Utilizing the unique 
capabilities of Bayesian MCMC empirical methods, results show that 
investor sentiment clearly signaled the equity market collapse of 2008-
09. Anomalous implied volatility plots exhibiting volatility “frowns”, 
not the usual volatility “smiles” or “smirks” for equity options, seen just 
prior to this significant bear market event reinforce additional findings 
that all three higher moments of the implied risk-neutral density play 
an important role in revealing investor sentiment about future market 
performance.

Further research might involve exploration of put option price 
behavior during such times of financial distress. For example, if call 
option prices are significantly less than corresponding B/S prices 
during times of financial distress, then put options should be very 
expensive. If so, do violations of put-call parity result? Are option 
markets segmented?

Appendix
The MCMC Bayesian model is based directly on the Fernandez and 

Steel [24] or FS formulation and is presented as
2 2 2( , , , , ) ( , , , ) ( ) ( ) ( ) ( ) ( )g r h rµ σ γ λ ν µ σ γ λ π µ π σ π γ π λ ν π ν∝      (A1)

Which states that the joint probability of the parameter vector 
conditional on the data is proportional to the likelihood function h(.) 
times the prior specifications. The parameter vector θ={µ, σP2P, γ, 
λB1B,…,λBnB,} has n+5 dimensions and is specified as

( )
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     (A2)

for each time period’s index return data. The task at hand is to derive 
the sampling-based marginal posterior distribution for each parameter, 
including the degrees of freedom hyperparameter, ν, that drives 
kurtosis. Gibbs sampling is used to determine marginal posterior 
distributions of parameters when conjugacy of the likelihood and prior 
distributions exists and an independent or random walk Metropolis-
Hastings (MH) step is used when it doesn’t

1.	 For the location parameter or mode, the likelihood function 
shown in equation (A2) along with a diffuse or non-informative 
normal prior is used to specify the parameter’s full conditional 
distribution. These are of unknown form and an M-H step is used to 
sample from the required target density. The diffuse prior specification 
for location is zero with a large variance. A random walk M-H step 
using a normal candidate-generating density is used to determine the 
marginal posterior density of each parameter. When skewness is not 
present and, thus, a symmetric likelihood exists, it is more efficient to 
use an independent M-H step with a Student-t candidate-generating 
density. The starting point for the mode, µ (0), is the mean of the return 
data vector.

2.	 Considering the variance, σP2P, a gamma prior is used to 
derive the full conditional distribution, or

[ ) ( )
2 2 2

0, ,02
1

1 1[ , ]~ , ( ) ( ) ( )
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i i i ii
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nr Ga r I r I rσ θ λ µ µ γ µ
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Where θB-iB designates all parameters of the parameter vector 
except σP2P Drawings can be generated for σP2P using Gibbs sampling. 
The data-based residual variance is used as a starting point when 
generating the Markov chain.

3.	 For the kurtosis parameter, λ, a gamma prior is specified, or 

1( ,.. ) ~ ,
2 2n i Ga ν νπ λ λ θ−

 
 
 

, where ν is degrees of freedom. Thus, the 

full conditional distribution is
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and random draws for λ can be made using Gibbs sampling. 
The conditional distribution for hyperparameter, ν, depends on 
its prior, which FS specify as an exponential distribution with 
density, ( ) dde νπ ν −= . This leads to  ( ) )(][ ii νπνλπ∝θν −  where 
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To have a diffuse prior, FS set d = 0.1, thus giving a prior mean of 
10 and a prior variance of 100. The above full conditional distribution 
for ν is not of known form and since  >0, a random walk M-H step with 
a lognormal candidate-generating density is used. Since the degrees of 
freedom parameter is not observed, a starting value, νP(0), equal to 20 
is used. This assumes, a priori, the absence of kurtosis. The subsequent 
analysis will then show if kurtosis exists.

4. 	 To derive the full conditional distribution for γ, a diffuse 
prior on ϕ≡γP2P is specified as Ga(a,b)= ϕ−−− ϕΓ b1a1a e)a(b  . This prior 
along with the non-normal likelihood gives
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As FS point out, this distribution is not of any standard form, but 

is unimodal. Since φ>0, a random walk M-H step with a lognormal 
candidate-generating density is used again to draw from the required 
distribution. Since the skewness parameter is also not observed, a 
starting value, φP(0), equal to 1.0 is used. This assumes, a priori, the 
absence of skewness.

The Markov chains are all run for 600,000 iterations with the 
first 550,000 discarded as the burn-in period. Of the remaining 
iterates every fifth one is retained to minimize any potential serial 
correlation, providing Markov chains of 10,000 iterates each for the 
subsequent analysis. For the M-H steps, all parameters have acceptance 
rates between 25%-75%, well within the 20%-80% recommended by 
Bayesian empiricists.
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