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Abstract

Annual fishes are found in both Africa and South America occupying ephemeral ponds that dried seasonally.
Neotropical annual fishes are members of the family Rivulidae that consist of both annual and non-annual fishes.
Annual species are characterized by a prolonged embryonic development and a relatively short adult life.

Males and females show striking sexual dimorphisms, complex courtship, and mating behaviors. The prolonged
embryonic stage has several traits including embryos that are resistant to desiccation and undergo up to three
reversible developmental arrests until hatching. These unique developmental adaptations are closely related to the
annual fish life cycle and are the key to the survival of the species.

Most of the available data on Neotropical annual fishes derive from studies on the genus Austrolebias. Herein, we
review and summarize the available data on the evolution, reproduction strategy, developmental biology and
conservation status of these Neotropical fishes.

Keywords: Annual fishes; Life cycle; Development; Mating; Sexual
selection; Conservation

Background
Zebrafish (Danio rerio) and medaka (Oryzias latipes) have become

widely used fish models because they are oviparous, exhibit long
breeding periods, transparency of eggs and embryos, and they are
relatively easy to maintain in the laboratory [1,2]. Strikingly different
to those model organisms is a group of teleost for which Myers [3]
used the term ‘annual fishes’. Annual fishes are found in ephemeral
pools of water in Africa and Neotropical regions and complete their
life cycle within a year at the end of which they die leaving behind
fertilized eggs that typically survive in the soil and hatch during the
next rainy season.

Neotropical annual killifishes share the general features of the
widely used teleost models mentioned above. However, they are
unique in having a very short lifespan, up to 9 months from hatching
to death [4]. Ecologically, they are exposed to an extremely variable
environment inhabiting ephemeral ponds; these habitat conditions
lead to the annual death of the entire adult population.

Life in seasonal and ephemeral aquatic habitats presents numerous
challenges. Among vertebrates, the African (Protopterus) and South
American (Lepidosiren) lungfishes, face seasonal habitat dry outs.
Protopterus avoids desiccation and aestivates during the dry season by
burrowing in the mud and forming a cocoon over its entire body,
except the mouth [5,6], whereas Lepidosiren do no form cocoon and
aestivates in burrows [7]. Among teleosts, the African and Asian
clariids catfishes survive dry season by burying in soft sand or in
burrows with water-air interface [8]. Burrowing and relatively
impermeable cocoons have also been reported in salamanders and
anurans; these cocoons consist of accumulation of multiple layers of

shed-keratinized skin detached from, but that remains enveloping, the
individual. The North American salamander genus Siren inhabits
seasonally drying swamps. They survive dry periods by burying in the
mud and forming cocoons [9-12]. Among frogs inhabiting deserts or
environments with prolonged dry season, cocoon formation evolved
independently and has been reported in distantly related genera of
North America (e.g., Scaphiopus), Australia (e.g., Cyclorana,
Neobatrachus), Africa (e.g., Pyxicephalus, Leptopelis), and South and
Central America (e.g. Ceratophrys, Lepidobatrachus, Smilisca)
[13-20].

Neotropical annual killifishes are members of the diverse freshwater
family Rivulidae (Cyprinodontiformes, Aplocheiloidei) distributed
from Mexico and the Caribbean Islands to Southern Argentina [21]
and includes both species with annual and non-annual life-history
strategies. Within this family, two major clades have been recognized:
Cynolebiatinae and Rivulinae [22-24]. The maintenance over
evolutionary time of an annual life cycle is coupled with inherently
related adaptations in embryonic development, ecological, and
behavioral traits [23]. The most striking difference between non-
annual and annual killifishes is that the later exhibit arrest
development (a diapausing egg). Annualism evolved independently in
the African family Aplocheilidae [24]. However, the single or multiple
evolution of annualism in Rivulidae is not fully resolved [25,26]. The
most recent analyses provide support for two independent origins of
annualism in the Rivulidae [27]. Furthermore, 1) the evolution of
annualism seems to be favored by the prolonged development of
cyprinodontiform eggs and species occurrence in geographical “harsh”
environmental conditions [27], and 2) annual species exhibit a
noticeable increase in the molecular rate of base substitutions relative
to non-annual rivulids [26].

Most of the information on the evolutionary and developmental
biology available for the Neotropical annual killifishes derives from
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studies on the genus Austrolebias Costa, 1998; a genus consisting of 39
currently recognized species and distributed across South-Eastern
South America [25,28].

Herein, we reviewed different aspect of the evolutionary biology of
the annual fishes with emphasis in the genus Austrolebias.

Life cycle
Throughout the rainy season, adults of Austrolebias inhabit flooded

small and medium size temporal pond found in grasslands habitats.
These ponds are shallow (50-100 cm deep) with a surface of about
100-500 m2, have aquatic vegetation, turbid water, and soft muddy

substrates. Adults are found in the fall, winter and spring months,
when the ponds are flooded. They engage in elaborate courtship
behaviors that result in the male and female burying in the substrate.
While buried they lay desiccation-resistant eggs. These eggs will
survive the disappearance of the ponds during the dry season (Figure
1). In the subsequent rainy season, once the ponds are flooded, most
eggs hatch. Consequently, the embryos spend their life buried in the
mud. Neotropical annual killifish grow after hatching and reach sexual
maturity fast in about 8-12 weeks and a new reproductive cycle begins
[29-32]. In contrast with Neotropical species, most of the African
annual species, Nothobranchius, lay their eggs on the surface of the
substrate and reach sexual maturity earlier in about 4 weeks [33].

Figure 1: Habitat (ephemeral pond) and biological cycle of annual fishes. (A) Environment during the wet season with flooded ponds when
the adults reproduce. Dimorphic colorations of Austrolebias charrua male and female are shown. (B) Environment during the dry season,
ponds have disappeared and only embryos remain in the substrate in a pre-hatching state of diapause III. An embryo in this stage and of the
same species is shown.

Courtship, mating, and sexual selection
Annual fish life occurs in geographical isolated, discrete, and

relative small populations. Consequently, they provide unique
opportunities to study mating behavior and in particular to examine
the role of sexual selection and the evolution of male traits, male
competition, and female choice. Differences, even small ones, in any of
these traits have a significant impact on reproductive success.
Reproductive isolation would then reinforce their geographical
isolation resulting in rapid speciation in this clade of annual fishes.

Striking sexual dimorphism has been reported for several species of
rivulids fish and most Neotropical annual killifishes. In Austrolebias,
males are usually larger than females. A recent study demonstrated

that intra- and intersexual selection on male body size favors larger
size in males of A. charrua [34]. Moreover, while females are overall
brownish with sparse darker dots on body and fins, males display
bright coloration, particularly on the opercular region, unpaired fins,
and body flanks. The coloration ranges from bright dots, sometimes
disperse over the body flanks and fins (e.g., A. affinis), dispersed over
the body flanks and arranged as horizontal bands on dorsal and
ventral fins (e.g., A. nigrippinis), to body flanks with distinct vertical
bright bands (e.g., A. charrua). Whereas tail fins in Austrolebias can
range from dots scattered over the entire fin to a line of dots close to
the edge of the rounded fin and a few other dots scattered over the
surfaces of the fins. A recent study suggested that ancestral coloration
for both sexes of killifishes was relatively plain [35].
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Male coloration plays a crucial role in male reproductive success
and male displays are used both in male-male interactions as well as
courtship of females. Early courtship studies described a pattern of
male displays in A. bellottii, A. nigripinnis, A. viarius, A.
luteoflammulatus, and A. cheradophilus [29,36]. These displays
consist of an overall pattern of six behavioral units: 1) males fully
extend and vibrate dorsal, ventral, and anal fins in front of the females;
2) male quick bursts of swimming alternating with sudden stops or
shift on direction; 3) male placing himself in a 45-90 degree angle with
the substrate, sometimes introducing the snout into the substrate;
throughout these early steps male coloration intensifies. After a while,
4) the female aligns and contacts with the side of the male; 5) the
mating couple then buries themselves in the substrate by means of
strong movements of the dorsal, ventral, and anal fins; 6) the pair
remains buried for variable periods of time, up to 45 seconds, and the
individuals emerge from the substrate at separate times and places.
This basic behavioral pattern (with the addition and/or modification
of behavioral units/displays) has been reported for other species (e.g.,
A. cyaneus, A. nigripinnis, and A. charrua) [37]. More elaborate
analyses of the sequence of behavioral units, as well as frequency and
duration of male and female behavioral units were reported for A.
reicherti [38]. Undoubtedly, these elaborate and sequentially
structured courtships play a role in species recognition and as barriers
to hybridization that are evolutionary critical given that more than one
species occur sympatrically in the small and ephemeral pools. Indeed,
a recent study [38] suggested that the high conservancy in the
sequence of courtship displays among species of Austrolebias is
involved in avoiding hybridization. Moreover, a recent study
demonstrates that A. reicherti responds to chemical cues of potential
mates and suggest that chemical cues are essential in the muddy ponds
in which this species reproduces [39].

Little is known, particularly under wild conditions, about the
natural history and biology of annual Neotropical killifishes, data such
as life span, diet, growth rate, egg production, life cycle, and ecology
are scarce. This is particularly the case for the genus Austrolebias
where the available data is limited to: A. adloffi [40,41], A. bellottii
[42,43], A. viarius [44,45], A. cheradophilus [45], A. luteoflammulatus
[45], A. nigrofasciatus [46], A. toba [47], A. reicherti [38], A.
vandenbergi [48,49], and A. quirogai [50].

Reproduction and sexual strategy
Different sexual strategies are found among teleost fishes. Diversity

ranges from gonochorism (testes and ovaries in separate individuals)
to hermaphroditism (functional male and female tissues in the same
individual) [51]. The only data referring to sex differentiation pattern
were reported for A. charrua. According to Yamamoto’s [52]
classification, this species corresponds to ‘differentiated gonochoric’
pattern where the early gonads directly develop into an ovary or a
testis without intermediate stages [32]

Austrolebias shows a high reproductive potential. After hatching,
most species analyzed reach sexual maturity in 8–12 weeks [29,53].
Under laboratory conditions, females spawn daily for about 32 weeks
until senescence. Similar data were reported for Cynopoecilus
melanotaenia [54].

Previous studies have shown that in most gonochoric teleosts sex
differentiation occurs during post-hatching stages and earlier in
females than males [55,56]. The first, and up to now only, histological
study about sex differentiation and gametogenesis in annual fishes
were reported for A. charrua [32]. This histological study reported

germ cells proliferation in presumptive ovaries before hatching,
demonstrating that sex differentiation occurs at pre-hatching stages.
This is a remarkable difference with most non-annual gonochoric fish
species where sex differentiation has been reported at various post-
hatching stages [56]. However, sex differentiation before hatching has
also been suggested for two closely related non-annual fishes Oryzias
latipes (Beloniformes) and Gambusia affinis (Cyprinodontiformes)
[57,58].

Gamete morphology and fertilization
Fish oocytes develop within the ovarian follicle (oocyte surrounded

by follicular cells) and are released during ovulation [59]. The oocyte is
surrounded by the vitelline envelope (eggshell, zona pellucida, zona
radiata or chorion) that is found between the oocyte and the follicular
cells. This structure is deposited in successive layers concomitant with
vitellogenesis [60,61]. Teleost fishes, as well as insects and
cephalopods, have a special structure in the form of a narrow channel-
like structure, the micropyle, which perforates the chorion at the
animal pole [62]. This funnel-shaped structure is the only site for the
male gamete entry and it is formed during the deposition of the egg
envelope. Furthermore, the micropyle opening has taxonomic and
systematic value since it shows morphological differences among
species and sperm attraction to its opening is species specific [60,62].
The teleost oocyte envelope has been shown to be a sensitive
biomarker to adverse pollutants. Furthermore, changes in the
organization of egg envelope and in its proteins synthesis have been
reported as a consequence of aquatic contaminants (particularly
xenoestrogens) [63,64].

Austrolebias oocytes exhibit the general characteristics of other
telolecithal eggs (i.e., large amount of yolk, nucleus in the animal pole
and just below the micropyle). However Austrolebias’ egg envelope is
thicker, a feature that may contribute to prevent dehydration during
dry season. In addition, the envelope surface of annual fishes is
ornamented with filaments of different sizes, thickness, and
distribution patterns among species [32,65,66] (Figure 2A). In
freshwater fishes in general [67], and annual fishes in particular
[65,68], the ornamentation of the egg envelope is species-specific and a
potential source of taxonomic and phylogenetic information.

As other teleosts with external fertilization, annual fishes have a
typical uniflagellate anacrosomal aquasperm [69]. At scanning
microscopy level, the sperm shows a spherical head, a midpiece
containing a single row of round mitochondria, and one flagellum.
The flagellar tail could have two, three, or four short lateral fins along
almost the entire length (Figure 2B). Teleost fertilization exhibits
distinct characteristics from those of other vertebrates and even other
“fish” groups. Sperm interaction only occurs at the micropyle of the
egg envelope. Since teleost sperm lacks acrosome, there is no acrosome
reaction during fertilization. Once near the micropyle, fish
spermatozoa show direct movement toward the micropyle opening
[70]. Furthermore, this attraction is mediated by a glycoprotein (lectin
based) found on the surface of the chorion and its removal result in a
reduction of fertilization rate [62]. The sperm fuses to the oocyte cell
membrane underlying the micropyle [71]. Therefore, in the cell
membrane of both gametes lies the key to species-specificity.
Consequently, the ultrastructure of egg envelope, micropyle, and
sperm head features are considered in phylogenetic analyses and pre-
zygotic isolation among closely related species. Studies of egg envelope
ornamentation patterns, sperm morphology, sperm-micropyle
attraction in Austrolebias are limited or absent. Available studies on
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related species, A. reicherti and A. charrua, support the idea that these
taxa have emerged from recent cladogenetic events [72,73]; these
species could then be a good species- pair model to study these traits.

Figure 2: (A) SEM of the egg’s envelope of Austrolebias charrua, the micropyle is visible at the center of the photograph (corresponding to the
animal pole). (B) Spermatozoa of A. charrua, note the round head, the collar of mitochondria in the neck, and the lateral fins of the tails.

Analyses of Zona Pellucida (ZP) gene sequences of teleost fishes
have demonstrated the presence of two classes of genes that encode ZP
proteins and are further distinguished by their expression in the liver,
ovary, or both depending on the species. The ancestral condition for
vertebrates is to have ovary expression of ZP genes [74,75]. In annual
fishes, ZP genes have been identified in A. charrua (achzpL and
achzpH), both expressed in the liver. The deduced amino acid
sequences showed identity values between 65 to 80 % with ZPs from
species belonging to a variety of fish groups (Fundulus heteroclitus,
Oryzias latipes, Sparus aurata, and Danio rerio) [61].

Embryo development
Annual fishes diverge from other teleosts in two aspects related to

their unique developmental pattern [3]. Epiboly is temporally and
spatially detached from organogenesis and the embryos undergo one
or more reversible arrests (diapauses). These developmental arrests
can occur at three different stages: Diapause I during epiboly,
Diapause II halfway through somite stage, and Diapause III at pre-
hatching stage [66,76-78]. These unique developmental adaptations
are closely related to their life cycle and ecological requirements to
survive in temporal subtropical and tropical environments.

As described above, egg laying and fertilization in Neotropical
annual fishes occurs while the adults are within the substrate. Through
meroblastic cleavage, that follow the general teleost pattern, a discoidal
blastoderm forms on the animal pole and three other distinct
populations of cells can be distinguished: 1) a yolk syncytial layer,
where the cleavage nuclei share a common cytoplasm [79,80], 2) a
population of deeper cells, and 3) the enveloping multinuclear layer,
an outmost layer of big and flat cells that surround and protect the
embryo [76].

Teleost gastrulation begins when deep cells move and meet forming
the embryo and at the same time epiboly of the enveloping
multinuclear layer and yolk syncytial layer occur. Conservation in
synchronicity of epiboly and convergence (presence of germ ring)
during gastrulation has been shown in comparative studies of early
development in several teleost species [81]. The first unique trait of

annual fish development occurs during mid-late blastula stage (the
dispersed phase) (Figure 3A): deep cells disperse over the entire
syncytial layer concomitantly with epiboly of the other two cell
populations [66,76,77] The triangular or rhomboidal deep cells
progressively migrate toward the vegetal pole. The number of cells at
early epiboly, compared with the typical teleost is quite low in all
species of annual fishes analyzed [77]. For example, A. viarius has
about 100 migrating deep cells [66] whereas in Danio rerio there are
about 4000 migrating cells in this early stage [1]. The reaggregation
phase occurs after dispersion when deep cells converge over the
surface forming an aggregate (Figure 3B). The early reaggregate is one-
cell thick but progressively the cells become tightly packed forming a
discoidal plate several cells thick [66,76,77,82]. This plate is evocative
of the blastodisc of amniotes during gastrulation. Interesting is that, at
this stage, the axis of the embryo develops at the center of the
reaggregated plate by mechanisms that remain to be determined. Is the
pattern of gastrulation in annual fishes different from the general
teleost pattern or is a derived one? A study of early gastrulation in
typical teleosts (Salmo, Salvelinus) [83] described a series of changes in
the adhesiveness and motility of deep cells. The study reported that, at
late blastula stage, these cells separate from one another and randomly
migrates. Thus, at the beginning of gastrulation, an incipient dispersed
phase has been reported as a general teleost feature and we could
consider it a precursor of the dispersed stage of annual fishes.
Furthermore, these authors established two overall patterns for teleost
development that may contribute to understand the dispersion–
reaggregation phases in annual fishes: 1) embryogenesis solely involves
the deep cells and 2) the first multicellular structure that forms during
embryogenesis (the ‘nubbin’), considered to be equivalent to the
prechordal plate, results from the localized ‘accumulation’
(aggregation) of previously ‘disengaged’ (dispersed) deep cells [83].
Similar observations were reported for medaka (Oryzias latipes) [84].
Based on these reports, the departure in the annual fish pattern with
distinctly defined dispersed and reaggregation stages could be
explained as extensions of the incipient processes previously described
in typical teleosts [4].
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Figure 3: Dispersion and reaggregation phases in Austrolebias charrua. (A) Dispersion phase: geometric-shaped deep cells are observed
progressively separating each other. (B) Reaggregation phase: the rounded deep cells confluent towards one point (area marked by the square)
(Nomarski (DIC) microscopy).

Subsequent processes of axis formation, somitogenesis, and
organogenesis in annual fishes development are similar to those of
other teleosts. However, compared with typical teleosts the overall
duration of embryo development in annual fishes has been
documented to be longer, lasting between 40 to 320 days post-
fertilization [78]. Considering that temperature influences the
duration of development, temperature variation could explain time
differences in developmental rate. In the African Nothobranchius

guentheri, an increase of 5 °C resulted in a reduction of 10 days in
development [85]. The duration of early embryonic development of
two Neotropical annual fishes was compared with three
phylogenetically close (Atherinomorpha series) non-annual teleosts:
Cyprinodontiformes (Fundulus heteroclitus), Atheriniformes
(Odontesthes bonariensis) and Beloniformes (Oryzias latipes) (Table
1) [86].

A. viarius

(25°C)

A. myersi

(25°C)

F. heteroclitus

(20°C)

O. latipes

(26°C)

O. bonariensis

(19°C)

Cleavage 24 h 7 h 10 h 5 h 15 min 7,5 h

Blastula

formation

72 h 20 h 24 h 8 h 15 min 8,5 h

Epiboly 168 h 44-48 h 40 h 21 h 38 h

Reaggregation 288 h 216 h

Embryonic

axis

312 h 228 h 37 h 21 h 29 h

Somitogenesis

(0-10 pairs)

384 h 264 h 56 h 39 h 53 h

Table 1: Comparison of early development duration among annual fishes, Austrolebias viarius [67], Austrofundulus myersi [77] and non-annual
fish Fundulus heteroclitus, Oryzias latipes [2], and Odontesthes bonariensis; culture temperature for each species is noted.

Diapauses
Unique among vertebrates are the developmental arrests or

diapauses of variable length that characterized annual fishes
development (Figure 4). Furthermore, these could be facultative or
obligatory depending on different genera. For example, in
Austrolebias, Diapauses I and II are facultative whereas Diapause III is

obligatory [78]. This fact has been described in A. nigripinnis [87], A.
bellotti [78], A. viarius [66] and A. charrua [66] in embryos cultured
under standardized laboratory conditions. In Austrofundulus,
Diapause I is facultative but Diapause II and III are obligates [78,88].
Considering the possible combinations among the stages, diapauses
can offer eight different developmental pathways to the timing of an
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embryo trajectory. From an ecological perspective, these possibilities
allow annual fishes to adjust to an unpredictable environment [78].

Figure 4: Diapauses (D) and their placement during the development of an annual fish from fertilization to hatching. The images correspond
to embryos of Austrolebias charrua and represent the following events: dispersion (D I), somite embryo (D II), and pre-hatching embryo (D
III).

Diapause I, which occurs during the dispersed stage of late blastula,
has been interpreted as an early control mechanism imposed by the
environment over the developmental pathway [77]. A study in the
African Nothobranchius, reported that this stage was induced by
chemical signals produced by adult fishes [89]. However, the polar
hydrophilic substance responsible for this developmental arrest
remains unknown [90].

Diapause II (that occurs at 35-40 somites stage) occurs in advanced
embryos undergoing organogenesis [76,78]. Most of the available data
about this stage are on the northern South American genus
Austrofundulus. Previous studies [88,91,92] have shown that A.
limnaeus shows: 1) depressed metabolism during diapause II, 2) most
metabolic heat dissipation is due to anaerobic processes, 3) great
tolerance to anoxia and the presence of a heat shock protein, and 4)
cells are in a G0-like stage of the cell cycle. A study working with the
same species explored the role of steroid hormones during Diapause II
and showed that treatment of embryos with exogenous E2 induced the
increase of the “escape embryos” (embryos that bypass diapauses II in
this case) [93]. Furthermore, this study demonstrated that an age
related decrease in maternal E2 is correlated with a decrease in the
number of escape embryos. Therefore, steroid hormonal signaling
seem to be involved in the regulation of diapauses II and progression
of development in A. limnaeus.

Diapause III occurs at the pre-hatching stage when the embryo is
almost ready to hatch. This stage precisely coincides with the variable
duration of the dry season. The overall metabolism of diapause III
embryos is lower when compared with those at the same stage that are
induced to hatch [88,94]. The resistance to desiccation seems to be
related to the ability of embryos to reduce evaporative water loss in A.
limnaeus [95,96].

Some non-annual Cyprinodontiformes are able to delay hatching
under particular environmental conditions. The non-annual killifish
Fundulus heteroclitus usually has continuous development and it’s
spawning and hatching coincides with high tide cycles in the coastal
marshes that inhabits [97]. However, developing embryos exposed to
air showed an accelerated developmental rate, whereas embryos show

delay hatching when the eggs are completely submerged under water
[98]. Furthermore, these authors found that levels of an aquaporin
protein were reduced in air-exposed embryos and suggest that this
class of proteins may play a role in water balance. Recently, a study
reported that in embryos of F. heteroclitus exposed to air more than
800 genes were differentially expressed. Furthermore, these genes
show transcriptional characteristics of ‘stress’ response proteins [99].
In this context, Diapause III could be considered as the addition of the
extended delayed hatching as an attribute in annual fish development
[78,97].

Conservation status
Most annual fish species, including Austrolebias, are threatened to

extinction mainly due to habitat degradation and climate change.
Ponds are being altered by different human activities [100]. As a
response to this situation, for example, in Brazil the “National Action
Plan for the Conservation of Threatened Extinction Killifishes” was
recently created. The main objective of this effort is to establish
mechanisms to protect and prevent the extinction of rivulids species
and loss of their habitats [101]. There is high conservation concern for
this group of fishes since they are included under the “Critically
Endangered” category of Rio Grande do Sul and Brazil [51,101]. In
this context, knowledge about the biology and culture techniques of
endangered species is essential to support conservation plans,
population management, and restocking. Moreover, these studies also
offer biological and methodological data to support the maintenance
of brood stocks of this important biological model for laboratory
studies [100]. In Uruguay in 2013, thirty-three species of Austrolebias
were included in the SNAP (Sistema Nacional de Areas Protegidas)
[102]

Final considerations
As summarize above, Austrolebias and other annual Neotropical

killifishes have unique developmental adaptations that are closely
related to the life cycle that make annual fishes a useful model for
comparative, developmental, and evolutionary studies. However, in
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Austrolebias there are many questions that remain to be explored. It
has been shown that this genus has specific courtship patterns and
sexual selection is important during mating. Courtship has been
described for a handful of species that limits our understanding of the
role of specific behavioral units in this group. Furthermore, the role of
sexual selection on the evolution of male characteristics and speciation
has not been tested. Does sexual selection has a stronger evolutionary
role in Austrolebias than in other freshwater fishes? Given their annual
cycle and that populations inhabit geographical isolated ephemeral
pond, one would anticipate a high role of sexual selection in
morphological evolution and speciation. No study is available on the
sperm-micropyle attraction as a prezygotic isolating mechanism in
Austrolebias.

Field studies are needed to understand the natural history of most
species; available ecological and population data as well as diet, growth
and other phenomenological data is limited. This information would
help to understand the dynamics of sympatric populations living in
ephemeral ponds. A few studies have suggested the systematic value of
the ornamentation of the chorion; however, the ecological role of this
ornamentation has not been addressed.

Undoubtedly, the annual cycle and diapausing egg in this group is
one of the most fascinating aspects of their developmental biology as
one of the most extreme pathways during early development of a
vertebrate. Annual fish diapauses are a kind of dormancy stages and an
evolutionary innovation that functions as a survival strategy to inhabit
harsh environments. These special stages show reduction or
suspension of metabolic activities until environmental conditions
become favorable. Considering that facultative and obligatory
diapauses are of variable duration, sibling eggs can produce embryos
that develop and hatch at different times, which in itself could provide
an evolutionary advantage for the survival of the species. In this way
asynchrony is increased and with it the ability of the organism to face a
very unpredictable environment. The recent studies on non-annual
killifish suggested that aquaporin proteins, as well as hundreds of
other stress-like proteins, may play a role in water conservation during
desiccation periods. No studies of gene expression have been done in
annual killifishes to understand the molecular basis of annualism. The
amazing biology of annual fish exemplifies one of the most extreme
events of alternate developmental pathways during early development
of a vertebrate.

Currently, studies on the evolutionary biology, ethology,
reproductive strategies, regulation of developmental pathways, and
senescence on several species of Austrolebias are in progress by
different interdisciplinary and international research groups. These
approaches should contribute to understand the complexity of annual
fishes at the developmental, functional, evolutionary levels.
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