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Abstract:

Macrophage plasticity is an important feature of these innate immune cells. Macrophage phenotypes are divided
into two categories, the classically activated macrophages (CAM, M1 phenotype) and the alternatively activated
macrophages (AAM, M2 phenotype). M1 macrophages are commonly associated with the generation of
proinflammatory cytokines, whereas M2 macrophages are anti-inflammatory and often associated with tumor
progression and fibrosis development. Macrophages produce high levels of reactive oxygen species (ROS). Recent
evidence suggests ROS can potentially regulate macrophage phenotype. In addition, macrophages phenotypes are
closely related to their metabolic patterns, particularly fatty acid/cholesterol metabolism. In this review, we briefly
summarize recent advances in macrophage polarization with special attention to their relevance to specific disease
conditions and metabolic regulation of polarization. Understanding these metabolic switches can facilitate the
development of targeted therapies for various diseases.
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Origins of Macrophages

Macrophages are innate immune cells of the mononuclear
phagocyte system that play an important role in the cross-talk between
the innate and adaptive immunity [1,2]. The function of macrophages
varies significantly with regard to tissue specificity, such as the alveolar
macrophages, the adipose tissue macrophages, Kupffer cells in the
liver, and microglia cells in the central nerve system. Based on the
expression of F4/80, murine tissue macrophages can trace their origin
back to two sources. Macrophages that are derived within bone
marrow usually express low F4/80, whereas macrophages that originate
from the embryonal yolk sac typically express high level of F4/80 and
are capable of proliferating in situ, a scenario seen in the radiation-
induced chimeras and the bone marrow transplant mice [3-5]. To
further delineate the circulating monocyte derived macrophages,
studies using specific surface markers, lymphocyte antigen 6C (Ly6C),
C-C chemokine receptor type 2 (CCR2), and CX3C chemokine
receptor 1  (CX3CR1),   two   sets  of   monocytes   are   identified:  the
Ly6C-high and Ly6C-low monocytes [6]. The Ly6Chigh monocytes are
inflammatory monocytes, which have high expression of CCR2 and a
low level of CX3CR1. They are short-lived and rapidly recruited to the
site of inflammation during the acute infectious process. The Ly6Clow

monocytes do not express CCR2 but have high level of CX3CR1. They
usually do not migrate immediately to the site of infection due to their
low expression of CCR2. However, Ly6Clow monocytes are usually
long-lived cells and play an important role in chronic processes, such
as tumorigenesis and fibrotic remodeling.

Macrophage Polarization
Macrophage polarization is a process through which macrophages

obtain different phenotypes. The phenotype of a macrophage is closely
related to the microenvironment in which they reside, as macrophages
are able to switch phenotypes constantly both in vivo and in vitro [7,8].
In an analogy to the T-helper-cell nomenclature, where Th1 cells are
associated with the response against bacteria or viruses, and Th2 cells
are associated with the response to parasitic infection and tissue
remodeling, macrophages can be denoted as M1 and M2 macrophages.
M1 macrophages (or classically activated macrophages, CAMs) are
pro-inflammatory and have potent microbicidal and tumoricidal
activity, whereas the M2 macrophages (or alternatively activated
macrophages, AAMs) are involved in tumor progression and tissue
remodeling, including fibrosis [9,10].

Classical macrophage activation requires priming with IFN-γ, the
canonical cytokine generated by Th1 cells, and activation of the
downstream transcription factors, such as signal transducer and
activator of transcription 1 (STAT1), nuclear factor-kappa lightchain-
enhancer of activated-B cells (NF-κB), and interferon regulatory factor
5 (IRF-5). These M1 macrophages express inflammatory genes,
including TNF-α, IL-1β, and IL-6. Alternatively activated macrophages
are usually activated by Th2 cytokines, IL-4 and/or IL-13. The wide
range of immunosuppressive cytokines and growth factors
alternatively activated macrophages produce, such IL-10, IL-1ra (IL-1
receptor antagonist), and transforming growth factor-β (TGF-β), are
closely related to their ability to attenuate inflammation and promote
extracellular tissue remodeling. Transcription factors involved in M2
polarization include STAT3, STAT6, IRF-4, and peroxisome
proliferator-activated receptor (PPAR)-γ (Figure 1). Differential
metabolism of L-arginine is characteristic of M1 and M2 macrophages.
L-arginine is metabolized by iNOS to generate nitric oxide (NO) in M1
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macrophages and by arginase-1 in M2 macrophages to augment the
production of polyamines and L-proline, which are essential substrates
for collagen synthesis [11,12].

Figure 1: General concepts of macrophage polarization and
properties of M1 and M2 macrophages. INF-γ induces M1
(classical) macrophage polarization whereas IL-4 and/or IL-13
induce M2 (alternative) macrophage polarization.

The origin of macrophages also plays a critical role in determining
macrophage phenotype. L. sigmodontis infection induces M2
macrophage proliferation in situ, rather than by the recruitment and
differentiation of circulating monocytes [13]. In contrast, in a LPS-
induced COPD model, using MRI tracking of nanoparticles-labeled ex
vivo, prepolarized bone marrow-derived macrophages, both M1 and
M2 are recruited to the sites of inflammation in the lung at similar
level [14].

Macrophage polarization and human diseases
The classically activated M1 macrophages boast the basic

macrophage function as implied by the name given by Elie
Metchnikoff in 1887. They are the dominant cells in acute infection,
participating in bacteria/pathogen clearance and antigen presenting by
their effective phagocytic ability. They also have compelling
tumoricidal activity. M2 macrophages are actively involved in many
processes associated with parasitic infection, immune tolerance,
wound healing, and tumorigenesis. The function of M1 and M2
macrophages are detailed below with a particular focus of M2
macrophage and human diseases.

Inflammation, infection, and sepsis: The generation and role of
alternatively activated macrophages (AAMs) has been studied
extensively in helminth-related diseases [15-17]. After N. brasiliensis
subcutaneous inoculation, their larvae travel to the lung and trigger a
potent M2 polarization in alveolar macrophages [15]. Helminth
infection not only initiates M2 polarization, but also is also capable of
subverting the M1 polarization as shown in Francisella tularensis
infection [18]. In an animal model of schistosomiasis, conditional
macrophage/neutrophil IL-4 receptor alpha-deficient mice (LysMCre-
IL-4Rα (-/flox)) show a predominant M1 polarization and more severe
infection with 100% mortality [19]. Endotoxin or lipopolysaccharide
(LPS) tolerance is the reduced responsiveness to LPS stimulus after
repeated exposure. It is a common scenario in patients with persistent
sepsis, especially in intensive care settings [20]. TNF-α production was

significantly elevated in monocytes treated with one dose of LPS.
However, if these cells were pre-challenged with the same dose of LPS
24 h before the second dose, the level of TNF-α production was greatly
reduced [21]. Peripheral blood monocytes and macrophages from
these patients often display features resembling alternative activation
of monocytes, including reduced production of pro-inflammatory
mediators and expression of genes involved in tissue remodeling
[21,22]. Similarly, peripheral monocytes collected from septic patients
have higher level of T17 and Treg cell populations with elevated
CD206 and CD163 expression, suggesting LPS-tolerance and M2
polarization [23].

Wound and tissue remodeling: Wound macrophages are known to
undergo alternative activation [24]. Delayed healing occurs in mice
with dysfunctional M2 macrophages or deficiency of signature M2
gene expression, such as arg1 [25]. Arginase-1 is pertinent to fibrosis
development as it metabolizes arginine to generate L-ornithine, which
will be utilized by ornithine decarboxylase to generate L-proline and
polyamines. While induction of arginase-1 by IL-4 and/or IL-13 is
commonly believed to contribute to collagen deposition and fibrosis
development [26,27], reports suggest that up-regulation of arginase-1
in macrophages actually inhibits fibrosis development as they compete
with fibroblasts for arginine as the substrate for L-ornithine synthesis
and by inhibiting Th2 cytokine production, particularly IL-13 [28].
Both IL-4 and IL-13 receptors have been shown to be essential for
fibrosis development in S. mansoni granuloma formation [29].
Alternative activation of macrophages is the predominant macrophage
phenotype in tissue samples from patients with chronic pancreatitis,
and mice lacking IL-4Rα have less M2 macrophages and are protected
from developing fibrotic changes after ceruletide injection [30]. By
using an IL-4/IL-13 blocking peptide, similar anti-fibrotic effects can
be achieved via inhibition of M2 polarization [30].

Cardiovascular diseases: The exact mechanism of how different
macrophage phenotypes influence myocardial remodeling remains
largely unknown. M2 macrophages have been shown to be crucial for
post-myocardial infarction remodeling as IL-13-/- mice have significant
worsening outcome in an infarction model compared to wild-type
mice [31]. Another study showed that mineralocorticoid receptor
knockout mice displayed a dominant M2 polarization pattern, and
these mice are protected against cardiac hypertrophy, fibrosis, and
vascular damage caused by angiotensin II. Additionally, aldosterone
can induce M1 polarization, while eplerenone, an aldosterone
antagonist, inhibits M1 activation, underscoring the cardioprotective
role of M2 macrophages [32].

Pulmonary diseases: Alternatively activated macrophages are also
implicated in various pulmonary disorders, including COPD, asthma,
pulmonary hypertension, and pulmonary fibrosis. Plasma Chitinase-1,
a signature M2 protein, has been used to quantify disease severity in
COPD patients [33]. One study shows a remarkable example of a
pathogenic role of IL-13 in chronic obstructive pulmonary disease
(COPD) that underscores the effect of M2 macrophages. The
macrophages upregulate IL-13Rα1 expression and become
alternatively activated by an autocrine or paracrine mechanism [34],
which leads to COPD progression. The role of different macrophage
phenotypes in pulmonary hypertension remains undetermined. It is
known that fibroblast-derived IL-6 polarizes alveolar macrophages into
an M1 pattern and drives the development of pulmonary hypertension
in a paracrine fashion, together with activation of signature M1
transcription factors, STAT3 and HIF-1α [35]. Others have found that
macrophages acquire an M2 phenotype during hypoxia, and M2
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macrophages lead to the proliferation of pulmonary artery smooth
muscle cells. Blocking M2 polarization can potentially attenuate the
progression of pulmonary hypertension by attenuating smooth muscle
cell proliferation [36]. Additionally, M2 macrophages are known to be
prevalent in the lungs of patients with idiopathic pulmonary fibrosis,
sarcoidosis, systemic sclerosis, asbestos-induced pulmonary fibrosis,
and gamma-herpes virus-induced pulmonary fibrosis [7,37,38].
Conversely, mice with predominant M1 macrophages are protected
from developing asbestos-induced pulmonary fibrosis [7,39]. Similarly,
in a bleomycin-induced pulmonary fibrosis model, both fibrosis and
alternative activation of macrophages are prolonged in TNF-α-/- mice.
Intra-tracheal delivery of recombinant TNF-α can ameliorate
established pulmonary fibrosis, partially via inducing Fas-mediated
fibroblast apoptosis [40,41]. Moreover, CCL-18, a signature M2
chemokine, is known to induce lung fibroblast collagen production
[42], highlighting the importance of crosstalk between macrophages
and fibroblasts.

Cancer: Tumor-associated macrophages (TAMs) have many
properties of M2 macrophages, and they contribute to tumor local
invasion through secreting proteinases, such as cathepsin [43]. GB111-
NH2, an inhibitor of cathepsin, decreases expression of the classic M2
genes, fizz1 and jmjd3, resulting in tumor regression [44]. TAMs also
promote angiogenesis and tumor growth through VEGF, leading to
chemo-resistance [45,46]. M2 macrophages promote tumorigenesis by
increasing signature M2 markers, such as CCL-18 [47]. IL-13, along
with its receptors IL-13Rα2, induces TGF-β expression and contributes
to tumor development by inhibiting cytotoxic T cells [48]. In contrast,
blockage IL-13Rα2 via siRNA reduces metastasis and promotes
survival [49]. Exposing TAMs to the canonical Th1 cytokine, INF-γ,
can reprogram TAMs to acquire M1 features and regain anti-tumor
activity [50]. Similarly, targeting transcription factors crucial for TAM
differentiation, such as STAT3, can also achieve tumoricidal function
[51]. Molecular inhibitors targeting M2 macrophages, such as the pro-
apoptotic peptide [52] and anti-VEGF antibody [53], are considered to
be potential candidates for cancer treatment.

Metabolic regulation of macrophage polarization
Redox status regulates macrophage polarization: The role of

oxidative stress in macrophage polarization is controversial. The
development of granulomas from S. mansoni exposure is not impaired
in IL-4-deficient mice [54,55], as other Th2 cytokines remain elevated.
In addition, wound macrophages are known to undergo alternative
activation despite a deficiency of Th2 cytokines in the wound
environment, and the macrophage phenotype is sustained in mice
lacking IL-4R. It is not clear from these studies what induced the
alternative activation.

Oxidative stress has long been known to play an important role in
the development and progression of pulmonary diseases. Pro-
inflammatory M1 genes, such as tnf-α, il-1β, and inos, have all been
shown to be regulated by redox proteins, including Cu,Zn-SOD
[56-58]. ym1 and fizz1, two signature M2 genes, are elevated in
ovalbumin-challenged asthmatic mice, and their expression can be
attenuated by treatment with N-acetylcysteine, a thiol-reducing agent,
linking M2 polarization to oxidative stress [59]. Previous studies have
shown that increases in the oxidative metabolic environment fuels
alternative activation of macrophages [60], while others show that M2
macrophages generate low levels of ROS [61]. The H2O2 gradient,
generated by dual oxidases (DUOX) in wound epithelium of zebrafish
larvae, is known to be the chemo-attractants for macrophage

recruitment [62]. IL-4-stimulated M2 macrophages have an enhanced
mitochondrial oxygen-consumption rate [63], and inhibition of
mitochondrial respiration by oligomycin dramatically increased the
mRNA expression level of pro-inflammatory genes, such as il-6, tnf-α,
and il-1β, underscoring an important role of mitochondrial respiration
in M2 polarization [64].

Figure 2: Redox regulation of macrophage polarization. Superoxide
generated by either membrane-bound NADPH oxidase or
mitochondrial electron transfer chain (ETC) will be converted to
H2O2 by superoxide dismutase, which will inhibit M1 polarization
and activate M2 polarization via STAT6. Revised from [7].

Data linking ROS to macrophage activation are emerging, but the
exact role of ROS still requires further investigation. The loss of
NADPH in a type I diabetes mouse model, superoxide-deficient bone
marrow-derived macrophages had a marked reduction in
proinflammatory M1 gene expression and showed increased M2
polarization, together with STAT6 activation [65]. Deficiency of
nuclear-encoded protein NADH: ubiquinone oxidoreductase iron-
sulfur protein 4 (Ndufs4), a critical component of mitochondrial
complex I, is known to be related to impairment of oxidative
phosphorylation [66]. Global Ndufs4 loss causes systemic
inflammation with a predominant M1 polarization [67]. At the same
time, a metabolic shift from fatty acid oxidation (FAO) to glycolysis
was observed in Ndufs4-/- pups. Moreover, Ndufs4-/- bone marrow
macrophages have significantly higher superoxide levels, which can be
attenuated by MitoTEMPO to further decrease pro-inflammatory gene
expression. Conversely, circulating M2 macrophages accelerate the
pathological progression of amyotropic lateral sclerosis (ALS), a
disease characterized with aberrant Cu,Zn-SOD function and excessive
H2O2 production [68]. Over-expression of Cu,Zn-SOD, the redox
protein that catalyzes the generation of H2O2, polarizes macrophages
to an M2 phenotype via activation of STAT6 with a cysteine residue
(Cys528) serving as the redox switch [7]. Moreover, Cu,Zn-SOD-
mediated macrophage polarization can be altered by modulating H2O2
generation. As previously mentioned, differential metabolism of L-
arginine is characteristic of M1 and M2 macrophages. Overexpression
of Cu,Zn-SOD leads to a reduction of inos gene expression and NO
synthesis, while arginase-1 expression and urea generation is enhanced
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[7] (Figure 2). Acute chlorine gas exposure leads to oxidation of
surfactant protein and augmentation of M2 genes, such as arg1, fizz1,
and ym1 [69]. Another study showed that alveolar macrophages
exposed to ozone have elevated levels of both M1 and M2 genes [70].
Interestingly, one study has compared macrophage phenotype in two
Nox2-deficient mouse models, gp91phox-/- and p47phox-/-. Mice
deficient in p47phox-/- have a significant increase of M2 gene expression
upon IL-4 stimulation and are protected from Listeria monocytogenes
infection compared with gp91phox-/- mice [71]. Explanations for the
differences include that macrophage polarization is driven by specific
reactive oxygen species (H2O2 vs O2 

•-), the different origin of ROS
(membrane-bound NADPH oxidase, particularly Nox2 versus
mitochondria), or the different tissue and intracellular distribution of
NADPH oxidases or SODs.

Redox regulation in macrophage polarization is closely related to
hypoxic conditions and hypoxia-inducible factors (HIFs) activation. In
murine macrophages, the expression of hypoxia-inducible factors
HIF-1α and HIF-2α appears to be dependent on respective inducers.
M1-promoting factors induce the expression of HIF-1α, whereas IL-4
primarily induces HIF-2α that regulates M2 polarization [72].
HIF-1α-/- macrophages exhibit diminished production of TNF-α and
IL-6 in response to LPS/IFN-γ stimulation in a model of tumor
spheroids [73].

Oxidative stress, particular the mitochondrial redox signal, is
known to cause endoplasmic reticulum (ER) stress due to the proximal
distance between mitochondria and ER [74]. Asbestos-treated
macrophages, which show M2 polarization, have elevated ER stress
with elevated level of binding immunoglobulin protein (BiP) and
C/EBP homologous protein (CHOP) [75]. Induction of ER stress
induces macrophage polarization from the M1 into the M2 phenotype
leading to increased cholesterol deposition and enhanced foam cell
formation [76]. MCP-1-induced protein (MCPIP), induced by either
STAT6 or KLF-4, inhibits NF-κB in murine macrophages and
instigates M2 polarization via induction of ER stress [77]. BiP and
CHOP levels are elevated in THP-1 monocytes treated with ER-stress
inducers, tunicamycin or thapsigargin, and the THP-1 cells undergo
M2 polarization via the PPAR-γ pathway. Interestingly, M2
polarization could be reversed by treating with ER stress inhibitor 4-
phenylbutyrate (PBA), emphasizing a potential therapeutic target [78].

Metabolism of fatty acid/cholesterol regulates macrophage
polarization: Prior data show that M2 polarization is dependent on
fatty acid oxidation (FAO), whereas M1 macrophages rely on aerobic
glycolysis [79]. The differences between the two metabolic pathways
involve a switch in the expression of 6-phosphofructo-2-kinase/
fructose-2,6-bisphostase (PFK2). M1 macrophages display a high
expression of glycolytic enzymes and glycolysis-related metabolites.
This shift toward aerobic glycolysis, known as the Warburg effect in
cancer biology, rapidly provides immune cells with ATP and metabolic
intermediates. In contrast, M2 macrophages have increased expression
of genes encoding molecules in FAO and oxidative phosphorylation
pathways [63]. Blocking oxidative metabolism not only selectively
abrogates the ability of cells to undergo alternative activation but also
potentiates the expression of M1 genes. Conversely, overexpressing
PGC-1β, a key transcriptional proponent of oxidative metabolism,
potentiates alternative activation and prevents classical activation by
augmenting FAO [60] (Figure 3). Compared with M1 macrophages,
which exert their functions over short time periods, M2 macrophages
are engaged in long-term cellular activities, and the relative efficiency
of FAO versus that of glycolysis is well suited to meet the metabolic

requirements of their roles [80]. M2 macrophages have been shown to
have longer survival compared to their M1 counterparts [63], and FAO
is known to support cellular longevity [81].

Figure 3: Metabolic regulation of macrophage polarization. M1
macrophages have increased uptake of glucose and augmented
glycolysis, whereas M2 macrophages have increased uptake of lipid
and augmented fatty acid oxidation. Specific cytokines and
transcription factors regulate these pathways. Activation of PFK2
leads to M1 polarization while over-expressing PGC-1β leads to M2
polarization.

The isoprenoid pathway, which is essential for cholesterol
metabolism, is a new target of modulating macrophage function. The
use of statins has been associated with interstitial lung abnormalities in
smoking individuals, a condition known to have a predominance of
M2 macrophages [82]. Statins have potent anti-inflammatory
properties and are known to orchestrate the immune response toward
alternative activation via regulating isoprenoid biosynthesis [83]. The
inhibition of farnesyltransferase, geranylgeranyltransferase I, and
geranylgeranyltransferase II decreases cell survival, migration, and
proliferation in many cancers [84]. Activation of Rac1 by
geranylgeranylation in alveolar macrophages promotes characteristics
of M2 macrophages and associates with the development of oxidative
stress and pulmonary fibrosis. Digeranyl bisphosphonate (DGBP),
which impairs geranylgeranylation of Rho GTPases by inhibiting
geranylgeranyl diphosphate synthase, reduces mitochondrial oxidative
stress and abrogates progression of pulmonary fibrosis by inhibiting
Rac1 activation and its mitochondrial translocation [85].

Both the Akt pathway and the isoprenoid pathway are important in
maintaining cell survival. Akt regulates apoptosis by modulating
isoprenoid pathway. Akt-deficient macrophages (Akt+/-) have a
significant increase of apoptosis. Akt overexpressing macrophages have
a distinct M2 polarization pattern and promote fibrotic development.
Conversely, Akt+/- mice are protected from developing pulmonary
fibrosis [86]. Statins activate Akt and, as previously mentioned, the use
of statins has been associated with interstitial lung abnormalities in
smoking individuals [82,87]. Surface scavenger receptors, which are
crucial for internalization of extracellular oxidized lipid particles, are
capable of regulating macrophage polarization. CD36 is known to be
important for triacylglycerol substrate uptake and sequential oxidative
phosphorylation, which leads to M2 polarization [63]. Another surface
scavenger receptor, MARCO (macrophage receptor with collagenous
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structure) has been shown to increase mitochondrial oxidative stress
and regulates macrophage polarization. Over-expression of wild-type
MACRO leads to increased M2 gene expression, while knockdown of
MARCO reduces M2 gene expression. Moreover, MACRO-/- mice are
protected from developing asbestos-induced pulmonary fibrosis.
Inhibition of the scavenger receptor by fucoidan reduces
mitochondrial H2O2 production, which inhibits macrophage M2
polarization [88]. Similarly, MARCO can limit inflammatory response
as MARCO-deficient mice show an early-enhanced development of
inflammation in response to influenza infection [89]. CD163, a
scavenger receptor for the hemoglobin-haptoglobin complex, is
expressed at high level by M2 macrophages in patients with idiopathic
pulmonary fibrosis [90].

Conclusion
Macrophage polarization is a dynamic process that our immune

system utilizes to maintain an immunological homeostasis. Various
factors influence polarization and further investigation for metabolic
regulation in shaping the macrophage differential profile is warranted.
In this review, we briefly summarize recent advances in macrophage
polarization with special attention to their relevance to specific disease
conditions and metabolic regulation of polarization. Understanding
these metabolic switches can facilitate the development of targeted
therapies for various diseases related to the distinct macrophage
subtype.
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