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Introduction
Sedimentary basins and their filling products give important 

information for the structural evolution of orogenic belts and have 
been broadly used as guide indicators for the analysis of tectonic events 
related to plate movements.

There are numerous different shapes of sedimentary basins. 
They can be approximately circular or elongate depressions, troughs, 
or embayments, but often they have irregular boundaries. Most of 
the recent attempts to classify sedimentary basins were based on 
the modern concepts of global plate tectonics, as well as regional 
tectonics. We distinguish basins related to extension, compression 
and strike-slip movements during plate convergence or divergence. 
Based on the modern concept of global plate tectonics, the different 
types of sedimentary basins can be grouped as following [1,2] I. 
Continental, intracratonic sag basins II. Continental fracture basins, 
including the rift basins and supradetachment basins III. Basins on 
passive continental margins IV. Oceanic sag basins V. Basins related 
to subduction or active continental margins and island arc systems, 
including the deep-sea trenches, forearc- and backarc basins, VI. 
Basins related to continental collision, including the foreland and 
retroarc basins, usually with substratum of continental origin and VII. 
Strike-slip and wrench basins, including the transtensional (pull-apart) 
or transpressional basins.

Crustal subsidence (tectonic, thermal or sediment overload 
subsidence) is the main motor to initiate the basin formation and 
the sediment deposition but it is often associated, especially in an 
extensional tectonic regime, with uplift/exhumation of deep crustal 
metamorphic rocks, and formation of the metamorphic core complexes 
[3,4]. Two end-member of extensional basins can be rerecorded during 
a continuous extensional tectonism: rift basins and supradetachment 
basins. The differences in magnitude and rate of extension, volcanism, 
heat flow and structural architecture define the basin style and suggest 
the geotectonic setting related to the basin evolution [2-4].

The Mesohellenic Trough (MHT) in NW Greece [5-12] and the 
Thrace Basin (THB) in NE Greece [13-17], including its possible 
continuation into the Axios Basin (AXB) [18], constitute two large late 
to synorogenic Tertiary molassic-type basins in the Hellenides (Figure 
1).

Younger, Neogene-Quaternary, unconformably overlying clastic 
sediments are not considered. Although these basins dominate with 
their size in the Hellenic orogen and the surrounding region (Figure 
1) (Albania, Bulgaria, Turkey; References herein-see above), and while
a lot of works with different approaches were published for each one
basin, there still doesn’t exist any comparison between the two basins
until today, concerning their structural and stratigraphic evolution
during the Alpine orogeny in the Hellenides, as well as their geodynamic 
setting. Besides, the knowledge of the structural evolution of both
basins, as well as their geotectonic setting and structural relationships
are of great importance to the better understanding of the tectonic
evolutionary history of the Hellenides. Furthermore, it is known the
great industrial potential of both basins due to gold-mineralizations
and their possible hydrocarbon supplies [7,14,19].

This work is the first attempt to compare the evolutionary history 
of the two basins, as well as their paleogeographic and geotectonic 
setting in the Hellenic orogen, at least during their molassic-type 
sedimentation period, taking into account our previous studies on 
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both basins and any different published work referred to each basin’s 
development. Furthermore, paleostress analysis based on fault-
slip data, used in order to calculate the paleostress tensor, for each 
tectonic event affected the molassic strata of both basins. The direct 
stress inversion method of Angelier [20,21] was used. Although, both 
basins have a similar lithostratigraphic age, evolved mainly during 
the Tertiary, they differ in their structural evolution and geotectonic 
position in the frame of the Hellenic orogen and its evolutionary stages.

Geological Setting - Structural Evolution
The mesohellenic trough (MHT)

Lithostratigraphy: The Mesohellenic Trough (MHT) is located in 
north-western Greece and Albania, and has a length of more than 200 
km and a width of 30-40 km (Figure 1). The basin developed from Mid-
Late Eocene to Mid-Late Miocene time, related to the Alpine orogenic 
processes, and is sited parallel to the structural fabric of the Hellenides 
(i.e. NNW-SSE), between the Apulian plate (External Hellenides, non-
metamorphic) and the Pelagonian nappe pile (Internal Hellenides, 
metamorphic).

The basin comprises five molassic-type formations (Figure 2) 
[5], overlying the Neo-Tethyan ophiolitic rocks and the transgressive 
Upper Cretaceous limestones or the western Pelagonian margin. 
Upper Miocene to Quaternary deposits overlie unconformably the 
molassic-type formations, which, from bottom to top, are (Figure 2) 
1) Krania Formation of Middle-Upper Eocene age and a thickness 
of 1500 m [5,7,8,22]. 2) Eptachori Formationof Uppermost Eocene- 
Lower Oligocene age and a thickness of about 1000-1200 m [5,7]. 
3) Pentalophos Formationof Upper Oligocene-Lower Miocene age, 
which attains a cumulative thickness of around 2500 m [5-8] while in 
the central part of the formation it is estimated to reach a maximum 
thickness of 4000 m [7]. 4) Tsotyli Formation of Lower-Middle 
Miocene age and a thickness of about 1500 m [5,7], and 5) Ondria 
Formation of Middle Miocene age (Burdigalian-Langhian), which 
remains only in a few places of the MHT with a thickness of about 350 
m. With the exception of the Krania Formation in the westernmost 

and the southeastern parts of the MHT, the other four formations 
were deposited parallel to one another from west to east, respectively 
(Figure 2), with an overall eastward migration of the depocenters and 
subsidence [5,23]. Accordingly, the Tsotyli formation directly restson 
top of the Pelagonian continent along the eastern margin of the trough. 
At the western edge of the basin, the strata dip towards the ENE at 
steep angles; dips decrease progressively away from this basin margin, 
whereas along the eastern margin of the basin the strata dip with a 
low angle towards the WSW. As a result an asymmetrical syncline is 
formed in the Northern part of the basin, controlled by structural and 
depositional processes (Figure 2). In the south the MHT splits into two 
narrower synclines separated by an uplifted structure (Figures 2 and 3) 
(Theotokos-Vassiliki villages’ areas) [6]. Furthermore, all formations, 
except the Eocene Krania Formation, become coarser towards the 
southern part characterized by extensive fan delta deposits [7].

Structural evolution: Numerous structural data, accrued from 
observations on geometry of kinematics, overprinted criteria, 
stratigraphic relationships and correlation between various structures, 
show that the basin experienced a complicated history with different 
tectonic episodes (T1-T5) (Figures 2-4) [11,12]. These events took place 
in semi-ductile to brittle conditions from Middle Eocene to Quaternary 
time. For the paleostress tensor calculation for each tectonic event the 
direct stress inversion method of Angelier [20,21] was considered. The 
solution is satisfyingly acceptable, if more than 80% of the fault-slip 
data from a site show a misfit angle less than 30° between the theoretical 
and real slip vector. The program My Fault-Version 1.03 [24] was used 
for the graphical presentation of the tectonic data.

The first stage (T1) of the basin’s development, during the Middle-
Late Eocene, was contemporaneous with the final emplacement of 
Pindos ophiollites on the External Hellenides and culminated in 
deformation and uplift of the Eocene strata. The Eocene sub-basins 
developed by crustal flexure and subsidence due to loading of the 
overthickened Hellenides accretionary prism. Basin evolution was 
associated with transpressional regime and dextral NNW-SSE trending 
strike-slip faults with a reverse, towards NE, dip-slip component. 
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Figure 1: The paleogeographic extension of the MHT and THB including the Axios Basin (AXB)in Greece and surrounding countries is shown (dark gray, the outcrops 
of the molassic strata in Northern Greece and the study areas in the box; light gray, the possible continuation of the basins in Northern Greece and the neighbouring 
countries). A-A’ cross section of Figure 16. Insert: The Major tectonic units of the Hellenides and their continuation to the surrounding orogenic belts. The position of 
the Mesohellenic Trough (MHT) and the Greek Thrace basin (THB) with yellow color, as well as the SSW-ward migration of the Cenozoic magmatic activity are shown.
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Reverse faults and asymmetrical folds, with a main NE-ward vergence, 
are developed within the Eocene Krania deposits. During the ensuing 
followed basin closure and uplift at the end of Eocene, the sediments of 
the first sub-basins were deformed and placed with a high angle at the 
western basin margin, locally concordant with the adjacent ophiolitic 
rocks (Figures 2-4 and 5a). The paleostress analysis shows an almost 

horizontal maximum principal σ1-stress axis NE-SW trending and an 
almost vertical minimum principal σ3- stress axis (Figures 4 and 6).

The second phase (T2) was dominated by strike-slip faults. Dextral 
strike-slip faults of NW-SE to NNW-SSE orientation controlled the 
subsidence and evolution of the basin from Early to Late Oligocene. 
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Figure 2: Geological-structural map of the MHT (modified after Brunn 1956; Doutsos et al. 1994; Zelilidis et al. 2002; Vamvaka et al. 2006) [5-7,11]. Numbers in circles 
(1) indicate the timing (T1) and the locations of the tectonic events where these are recognized and was estimated the corresponding stress tensor (Figures 6-9). AFT 
and ZFT ages from the Pelagonian basement and the MHT sediments are shown in boxes [12]. Insert: Lithostratigraphic column of the MHT.
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Figure 4: Distinctive features and kinematics of the main deformational events (T1 to T5) related to the MHT evolutionary history. Paleostress analysis diagrams 
(σ1>σ2>σ3) for each tectonic event are shown (equal area, lower hemisphere). Fluctuation histograms of deviation angles (angle between the calculated slip vector 
and the measured slickenline) and stress ratio R= σ2-σ3/σ1-σ3 are also indicated.
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They define the western boundary of the MHT between basement rocks 
and the Eptachori Formation (Figures 2-4 and 5c-5g). Sinistral strike-
slip fault zones along the western boundaries of the MHT are interpreted 
as riedl-structures. Strike-slip faults, positive flower structures and rare 
compressional structures (Figures 3 and 4) have been developed under 
a transpressional tectonic regime. It is characterized by a decrease in 
intensity towards the East and a small shift of the, low angle plunging, 
maximum principal stress axis (σ1) from NE-SW to NNE-SSW, 
showing a small change in direction compared with the first T1 event. 
NW-SE to WNW-ESE trend shows respectively the minimum stress 
axis (σ3) with a low also plunge, towards ESE or WNW (Figures 4 and 
7).

The third phase (T3) was characterized by low-angle normal faulting 
along the eastern boundary of MHT during the Early-Middle Miocene, 

causing the subsidence at that part of the trough (Figures 2-4). T3 was 
associated with the Oligocene-Miocene syn- to late orogenic collapse 
and detachment of the Pelagonian nappes [25-27]. The evolution of 
the sedimentary basin ended around Middle-Upper Miocene, followed 
later by rapid uplift and marine regression. The minimum σ3-stress 
axis was computed almost horizontal with a NE-SW orientation, 
whereas the maximum σ1-stress axis are nearly vertical, indicating the 
extensional stress regime during T3 event (Figures 4 and 8a).

A compressional event occurred during the Late Miocene times 
of relatively local importance, related to oblique reverse faults with a 
main, towards NE sense of movement, as well as strike-slip faults (T4) 
(Figures 2, 4 and 5d). T4 faults cut all the MHT molassic formations 
but not the younger postmolassic, Pliocene deposits of the basin. The 
paleostress analysis suggested that the stress regime during T4 event 
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was characterized by a subhorizontal NE-SW oriented maximum σ1-
stress axis and a subvertical minimum σ3-stress axis (Figures 4 and 8b).

Finally, extensional tectonics affected the whole area from Late 
Miocene to present-day related to high angle normal faults (Figures 2 
and 4) (T5a), some of which are reworked as great active faults (Figures 
2 and 4) (T5b). The paleostress analysis indicates the minimum σ3-
stress axis oriented subhorizontally from NE-SW (Figure 9a) (T5a) 
to N-S (Figure 9b) (T5b). The last measurement develops as a relative 
younger orientation coinciding well with the extension direction of the 
recent seismic activity [28,29]. In both cases of T5a and T5b faults, the 
maximum σ1-stress axis remains almost vertical (Figure 9).

Furthermore, the conclusions of apatite fission track (AFT), as well 
as zircon fission tracks (ZFT) analyses, that were performed by Vamvaka 
et al. [12] on the detrital material in the MHT sedimentary strata and 
their bordering Pelagonian basement rocks (Figure 2), towards the 
comprehension of the MHT development, confirm the Pelagonian 
continent as the main source of the detrital material and meet well 
with the conclusions from the structural analysis. No correlation with 
FT ages of the western bordering basement rocks (mainly ophiolites) 
was available due to inappropriate lithology. Heating of the western 
margin of the Pelagonian continent adjacent to the MHT, during 
Lower-Middle Eocene, was associated to thrusting, and directly 
followed by fast cooling and exhumation in Middle-Upper Eocene. The 
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slower cooling and exhumation in the continuing during Oligoceneis 
associated to the strike-slip faults (T2) which cause localized uplift and 
subsidence (in the area of MHT), while less vertical movements are 
produced in other places (e.g., the Pelagonian continent). The Miocene 
extensional period (T3) is also shown from thermal modelling of track 
length distribution, which indicates a prolonged stay in the same 
temperature range (or reheating) around 25 to 10 Ma. This can be 
caused by crustal thinning and rise of the geothermal gradient, started 
already since Oligocene-Miocene time, accompanying an extensional 
period. In the latter thermal model, an enhanced uplift is also predicted 
during the last 10 Ma, which is consistent with the filling of the basin 
with sediments and the uplift of the area.

Geodynamically, the MHT evolved as a piggyback basin in a 
foreland setting above westward-emplacing ophiolites and higher 
Pelagonian units [6,8,11,22] while great importance is given to the 
role of strike-slip faults in the structural evolution of the MHT [11,12]. 
Successive stages and changing tectonic regimes recognised in the MHT 
formation are met in strike-slip basins, while experiencing alternating 
periods of extension and compression. The changing structural settings 
and repeated episodes of rapid subsidence and uplift, variable depths 
along the axis of the basin, asymmetry and big length-to-width ratios 
(4:1), axial infill subparallel to the principal displacement zones, abrupt 
lateral and vertical facies variations, and of course the presence of 
strike-slip faults, as certainly observed to bound the western side of 
the MHT, are some indicative features of the MHT, which constitute 
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typical criteria for the recognition of long-lived strike-slip zones and 
related basins. As the trough developed due to different tectonic events 
reported earlier, it corresponds to the pattern of polyhistory strike-slip 
basins (classification after Busby and Ingersoll) [1].

In conclusion, our interpretation for the evolution of MHT suggests 
successive tectonic events, in response to which MHT developed, 
involving isostatic crustal flexure, strike-slipfaults, associated with 
reverse dip slip component, and normal faulting (Figure 3).

The thrace basin (THB)

Lithostratigraphy: The Thrace Basin, one of the largest Tertiary 
basins in the North Aegean region, is formed on the metamorphic rocks 
of the Rhodope massif in Northern Greece and Southern Bulgaria [14-
16,30-35] as well as the Strandja and Sakarya massifs in NW Turkey, 
where the depocentral area of the basin is evolved (Figures 1 and 10) 
[36-40]. Tertiary basins (Figure 1) (Axios basin, AXB) are also referred 
to the Eastern Former Yugoslavian Republic of Macedonia (FYROM) 
by Dumurdzanov et al. [18].

Our data are focused on the part of the Thrace basin in the Greek 
mainland covering the Rhodope metamorphic province. Here the 
deposits of the THB consistof molassic-type sedimentary rocks of 
Paleogene age overlain unconformably by a thick (1-2 km) Neogene-

Quaternary sedimentary sequence (Figures 1 and 10) [13,17,30]. 
More than 90% of the total surface of the THB is covered by younger 
Neogene to Quaternary sediments and the Aegean Sea. About 10% 
of the Paleogene exposed outcrops of the basin is extended in the NE 
Greek mainland, from the Pangaion mountainous range until the 
Greek -Turkey borders, and the North Aegean islands of Limnos and 
Samothraki (Figures 1 and 10).

Some small outcrops of Paleogene sediments along the Axios Basin 
beneath Neogene-Quaternary sediments (Figure 1) [18] were regarded 
as equivalent infilling products to the Paleogene THΒ sedimentary 
rocks. The molassic sediments of the THΒ, as well as their equivalent of 
the Axios Basin show an age from Middle-Upper Eocene to Oligocene 
[13,17,41,42]. They constitute a complicated stratigraphic sequence 
composed by intercalation of bedded conglomerates, breccias, 
conglomerates, sandstones, nummulitic limestones, turbiditic layers 
and shales (Figure 10).

Sedimentation started during Bartonian time with initial 
deposition of continental sediments (mainly breccias, conglomerates 
and sandstones (Figure 11e), followed during the Late Eocene-
Oligocene by marine turbiditic type deposits and limestones (Figure 
11d). The sediments of the THB lie in places on the basement rocks of 
the Rhodope massif and in other places on the low-grade metamorphic 
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Permo-Triassic, volcano sedimentary Maronia- Nea Makri series 
(Figures 10 and 11a-11c) [33,35,43]. The total thickness of the Paleogene 
sedimentary sequence is estimated to 2-3 km [13,30,31], although in 
the Turkish part of the broader Thrace Basin, where its depocenters 

are developed, a thickness of about 9 km is reported [44]. Moreover, 
Roussos [42] refers that also in some parts of the Greek ThB, which are 
covered by the Neogene-Quaternary sediments or the Aegean Sea, the 
sedimentary deposition can reach a thickness of ca. 9 km.
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The molassic-type sediments of both Thrace and Axios Basins, 
are intercalated by a lot of calc-alcaline and partly shoshonitic-type, 
acid to intermediate volcanic products of the same age, Upper Eocene 
to Oligocene (Figures 11f and 12-14) [18,45]. Magmatic activity was 
further related to gold-mineralization of great economic importance 
[14].

Structural evolution: Detail structural analysis and geological 

mapping, as well as study of the kinematics of deformation of the 
sedimentary-volcanic sequence of the THB and its boundaries with 
the basement rocks of the Rhodope massif and Maronia-Nea Makri 
series, show a complicated structural evolution of the basin. It can be 
recorded in five progressive tectonic events (D1 to D5) from Eocene 
to Quaternary time (Figure 12). Subhorizontal extension dominates 
during the overall deformational history [35]. The direct stress inversion 
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Figure 12: Distinctive features and kinematics of the main deformational events (D1 to D5) related to the THB evolutionary history. Paleostress analysis diagrams 
(σ1>σ2>σ3) for each tectonic event are shown (equal area, lower hemisphere). Fluctuation histograms of deviation angles (angle between the calculated slip vector 
and the measured slickenline) and stress ratio R= σ2-σ3/σ1-σ3 are also indicated (Kilias et al. 2013).
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method of Angelier [20,21] was also used here for the calculation of the 
paleostress field for each tectonic event.

D1 is characterized by low angle normal detachment faults, 
recognized at the tectonic boundaries of the Paleogene basin formation 
with the basement rocks, where no reworking took place due to younger 
tectonic events (Figures 11a-11c and 12-14). D1 detachment faults strike 
E-W to NW-SE with a main S-SW-ward dip direction. Some deviations 
of these ratesare observed at different parts of the basin (Figures 13 
and 14). Top to SW to SSW sense of shear dominates along the D1 
fault planes (Figures 11a-11c) but in some places an opposite top to 
the NE-NNW sense of movement is also recognized related to D1 fault 
planes dipping to N-NE (Figures 13 and 14). The paleostress analysis 
indicated NE-SW to NNE-SSW trending subhorizontal minimum σ3- 
and subvertical maximum σ1-axes of the stress tensor (Figures 12).

D2 evolved during Oligocene-Miocene time and is related to the 
further reconstruction of the Thrace Basin. D2 is characterized by 
transpressional tectonics and formation of large conjugate strike-
slip faults and extensional fractures, as well as thrust faults and folds 
with N-NW or S-SE sense of movement (Figures 11g-11i and 12-
14). D2-extension remains again NE-SW oriented ca. parallel to the 
D1-extension, while compressional component of deformation is 
developed parallel to the Y-axis of the strain ellipsoid. During D2, the 
minimum principal σ3-stress axis is developed subhorizontal with a 
NE-SW to ENE-WSW trend, slightly deviated from those of the D1 
event, and the maximum principal σ1-axis subhorizontal with a NW-
SE trend, respectively (Figure 12).

D3 is responsible for high-angle normal faults dismembering the 
Eocene- Oligocene molassic basin into Neogene grabens (Figures 11g, 
11i and 12-14). Some D2 strike-slip faults are reactivated during D3 
event, as it is clearly concluded by the existence on their fault planes 
of oblique, to the strike-slip movements, younger D3-striations with 
normal sense of movement (Figure 11g). D3 event takes place during 
Miocene-Pliocene time while D3 extension continues about at the same 
orientation, NE-SW to ENE-WSW, with the earlier D1 and D2 events. 
The fault plane analyses yielded subvertical the maximum σ1-stress 
axis and subhorizontal ENE-WSW to E-W trending the minimum σ3-
stress axis (Figure 12).

The D4-event is related to large WNW-ESE to NE-SW normal 
oblique fault zones (Figures 11j and 12-14) some of which are older, 
reactivated during D4, as it is indicated by the existence of at least two 
striations` generations on their fault planes, with the younger one to be 
compatible with the D4 kinematics (Figures 13 and 14). D4 structures 
are of Pliocene-Pleistocene age, characterized also by minor oblique 
reverse faults. Extension orientation changes slightly during D4 to 
NNW-SSE, associated with a subhorizontal ENE-WSW contraction. 
Stress tensor during D4 was calculated with the minimum σ3-axis 
at a NNW-SSE to NNE-SSW bearing and the maximum σ1- axis at 
an ENE-WSW to ESE-WNW direction, both with a low to moderate 
plunge, respectively (Figure 12).

Some of the D4 fault zones remain active until present time (D5). 
They form large active faults reactivated during the present stress field in 
the area defined by the earthquake focal mechanisms and characterized 
by a NNE- SSW oriented subhorizontal extension (Figures 12-14). 
The paleostress analysis of the D5 active faults revealed a minimum 
σ3-stress axis subhorizontal with NNE-SSW bearing (i.e. 10 ° to 30 
°) (Figure 12) which coincides exactly with the active extension in 
the broader area, as it is concluded from the local mechanisms of the 
strong earthquakes [28].

We interpret the Paleogene part of the THB in the NE Greek 
mainland as a supradetachment basin [35], as it is shown by the 
syntectonic deposition of the Paleogene molassic strata of the THB 
on the fault planes of the extensional detachment faults, related to the 
stretching and progressive exhumation of the Rhodope metamorphic 
nappe pile during the Tertiary (Figure 15) [33,35,43,46-49]. The 
Paleogene volcano sedimentary infilling of the Axios Basin is regarded 
as equivalent to the Greek Thrace Basin sedimentary sequence.

Geotectonic setting-discussion

Molassic-type sedimentation starts in both basins, MHT and THB 
including the Paleogene sequence of the Axios Basin, simultaneously 
during Mid-Late Eocene time (Bartonian-Priabonian), but it finishes 
at different time, at the Mid-Late Miocene for the MHT and the Late 
Oligocene for the THB and its equivalent part of the Axios Basin. This 
Tertiary, westwards progressive delay of the sedimentary stoppage in 
both areas, is compatible with the W-SW- wards orogen migration of 
the Hellenides during the Tertiary [49]. Neogene-Quaternary sediments 
lie discordantly on the molassic deposits of the basins, forming the 
last intramontane basins of Hellenides. Furthermore, the THB and its 
equivalent sequence of the Axios Basin is characterized by abundant 
volcanic products associated with granitoid intrusions of similar age 
into the Rhodope basement rocks under syn- to late orogenic extension 
[32,50]. Nevertheless, important strike-slip movements of Oligocene-
Miocene age associated with transpressional or transtensional 
structures are common during both basins` evolution, showing the 
great significance of such strike- slip movements along the Hellenides 
during the Tertiary. Both basins show further analogous deformational 
setting during the Neogene-Quaternary time with the development of 
local compressional structures followed again by a general extension 
regime. Active faults with about the same kinematics, NNE- SSW for 
the THB and NNW-SSE for the MHT, dominate also in both areas.

The MHT was evolved as an intramontane piggy-back basin above 
the ophiolitic nappe and the higher Pelagonian units, during their 
westward traveling upon the cold Hellenic accretioniary prism (Figures 
3 and 16). This geotectonic position, on the cold accretionary prism 
(Lower plate), interprets well the total lack of any magmatic activity 
during the basin evolution. Initial isostatic crustal flexure associated 
possibly with back-thrusting toward east (Mid-Upper Eocene), strike-
slip faulting (Oligocene-Miocene) and finally normal detachment 
faulting towards west (Lower-Middle Miocene) were the main motor 
mechanisms related to the basin evolution [11,12]. This differs from 
previous interpretations, from Doutsos et al. [6] that envisaged 
foreland depression related to continue, from Eocene to Miocene, back 
thrusting towards east or from Ferriere et al. [8] who suggest that the 
MHT originated as a forearc basin during the first stages of a Mid-Late 
Eocene subduction (Pindos basin) and evolved into a piggy-back basin 
as a result of Oligocene underthrusting of the large thick-crust Gavrovo- 
Tripolis domain. In contrast to the MHT, at least the studied part of 
the Greek THB, including the Paleogene deposits of the Axios Basin, 
evolved as a Paleogene supra detachment basin above the strongly 
stretched, during the Eocene-Oligocene, Internal Hellenides (Figures 
15 and 16) [33,49]. Exhumation of deep crustal levels took place about 
simultaneously with basin subsidence and migration of deformation 
towards W-SW, as well as with the progressive change of the tectonic 
conditions from ductile to brittle during the Paleogene - Neogene 
[35,49]. The origin of the Upper Eocene-Oligocene syndepositional 
magmatic activity could be attributed to the subduction processes 
evolved during the Paleogene more further to the W-SW in Pindos 
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or Axios ocean(s). So that it is concluded that extension and basin 
formation in the Rhodope province took place simultaneously with 
contraction, nappe stacking and crustal thickening as well as HP/LT 
metamorphism at the more external parts of the Hellenides towards the 
foreland (Figure 16) [25,26,51-53].

However, Marchev et al. [32] explain the origin of the Paleogene 
magmatism and the simultaneous extension and crustal thinning of the 
Rhodope continental curst due to convective removal of the lithosphere 
and mantle diapirism, while Maravelis et al. and Tranos [16,34] regard 
the Thrace Basin as a fore-arc basin but without clear evidence about 
the existence or position of a Tertiary accretionary prism associated 
to the basin formation. Furthermore, their main investigations were 
focused in the Limnos island at the southernmost continuation of the 
THB.

Conclusions
In conclusion, according to our descriptions about the structural 

evolution and stratigraphic features of the MHT and THB (including 
the Axios Basin), we assume that both basins constitute independent 
basin structures, evolved in different geotectonic positions and do not 
represent lateral continuation. The THB evolved on the stretched and 
thinned upper plate of the Hellenic hinterland, above of a subducted 
slab of the lower plate during the Tertiary (Figure 16). Basin subsidence 
was associated with tectonic denudation and exhumation of deep 
crustal metamorphic rocks of the Rhodope province, as well as with 
abundant magmatic products. The MHT was evolved on the cold, thick 
crustal part of the External Hellenides, in the foreland area behind 
the Tertiary accretionary prism of the Hellenides and the Tertiary 
subduction zone (lower plate during the Tertiary orogenic processes), 
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so that no important magmatic activity accompanied the sediments 
deposition during the basin evolution (Figure 16).

In any case, the tectonic history of both basinsseems to be related 
to an overall oblique plate convergence of the Apulia plate and the 
Internal Hellenides units during the Tertiary, as it could be inferred 
by the important Tertiary strike-slip motions dominated in both areas 
[11,12,54,55].
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