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Commentary
During the last decades our knowledge of the versatile tasks of the

lysosome has increased tremendously. Several ground breaking
discoveries, have positioned the lysosome as one of the central
organelles for normal physiological function and in disease. In this
short overview we exemplify some of the recent achievements in our
understanding of lysosomal function during nutrient sensing, cell
death, exocytosis and cholesterol homeostasis as well as lysosomal
malfunction during disease. Outlined are also several of the gaps in our
knowledge and challenges that need to be addressed in the future.

The Diverse Functions of the Lysosome
The endo-lysosomal system is central for cellular degradation and

recycling of material delivered by endocytosis, phagocytosis and
autophagy [1-3]. The lysosome is the major digestive compartment and
contains around 60 hydrolases, active in the acidic environment and
able to degrade most cellular macromolecules. In the lysosomal
membrane integral membrane proteins are embedded, whose
functions are essential for lysosomal biogenesis, acidification,
transportation of metabolites, as well as chaperone-mediated
autophagy. Over 45 lysosomal membrane proteins have been identified
and bioinformatics analysis predicts that the list will grow in the future
[4,5]. The lysosome-associated membrane protein 1 (LAMP-1) and
LAMP-2 are the most abundant and constitute approximately 50% of
all proteins transversing the membrane. In addition, channels and
transporters of ions such as H+, Ca2+, Na+, K+, and Cl- have been
identified. The ion flux across the lysosomal membrane is technical
difficult to study. However, a novel lysosome patch-clamping technique
has been developed, making it possible to examine lysosomal channels
under near physiological conditions [6]. The diverse functions of the
lysosome renders it a central position not only for degradation activity,
but also as a regulator of nutrient sensing, exocytosis, receptor
recycling and regulation, cell death and cholesterol homeostasis [7].
Beside conventional lysosomes, lysosome related organelles (LRO),
including melanosomes, lytic granules, and platelet-dense granules,
exists in certain cell types and have acquired special functions [8,9].

Lysosomes have a central role in sensing the nutrient availability
and generate an adaptive response to maintain cellular homeostasis
[10]. This is achieved through activation of the transcription factor EB
(TFEB), which occurs at the lysosomal surface and is regulated by
mechanistic target of rapamycin (mTOR)-mediated phosphorylation
[11]. Upon amino acid shortage, lysosomal Ca2+ stores are activated
and released leading to activation of calcinurin, which binds and
dephosphorylates TFEB, thus promoting its nuclear translocation [12].
Discovery of TFEB as a master regulator of lysosomal biogenesis,
regulator of autophagic function and energy metabolism has opened a

new field of research to tie environmental alterations to lysosomal
function.

Plasma membrane damage jeopardizes the survival of the cell. By
translocation of lysosomes to the wounded area and donation of
lysosomal membrane by exocytosis, cell lysis can be avoided [13,14].
The exocytosis process is triggered by Ca2+ influx from the
extracellular compartment and requires the ubiquitously expressed
lysosomal membrane protein synaptotagmin VII [15]. Moreover, in a
model for the lysosomal disorder sialidosis, it was found that lysosomal
exocytosis is increased in cells defective in neuraminidase, which
results in over-sialylation of LAMP-1 [16]. The plasma membrane
repair process is associated with release of lysosomal content including
lysosomal proteases, cathepsins, outside the cell [17], which might
have consequences for communication between cells and stimulate
degradation of the basement membrane in tumors. Exocytosis is
followed by removal of the lysosomal membrane by either endocytosis
or a membrane shedding processes [17,18]. Lysosomes are transported
along microtubules in the peripheral cytoplasm by the action of a
multi-subunit complex named BORC [19]. Not all lysosomes are prone
to be exocytosed upon plasma membrane damage. It is, however, not
clarified how different populations of lysosomes are selected and
targeted for different functions. It has been shown that lysosomes
located at cell periphery are exocytosed in response to cholesterol
depletion [20]. Moreover, in cancer misrouting of the lysosomes from
their normal perinuclear intracellular position to the edges of the cell
might facilitat exocytosis and metastatic spread [21].

Due to their high content of hydrolytic enzymes, lysosomes are
potentially harmful to cells and massive lysosomal rupture might lead
to necrotic cell death [22]. However partial and selective lysosomal
membrane permeabilization (LMP) could trigger several forms of
controlled cell death [23]. The main lysosomal players implicated in
cell death are the cathepsins that are released to the cytosol during
LMP [24-26]. Kreuzaler et al. recently demonstrated that LMP is not
only an in vitro phenomenon, since the lysosome-mediate cell death
pathway is active during involution of the mammary gland after
lactation [27]. The mechanism of LMP is not clarified and most likely,
lysosomal destabilization is due to alteration in both lysosomal
membrane proteins and lipids causing destabilization of the
membrane. It is also hypothesized that release of lysosomal content to
the cytosol not always signals death, but might also take part in cellular
signaling during normal processes.

The importance of lysosomes in cholesterol homeostasis was
identified through the disease Niemann-Pick type C, which is an
hereditary disorder caused by the inability to export low density
lipoprotein (LDL)-derived cholesterol out of the lysosome [28,29]. In
blood cholesterol is transported in LDL particles that enter the endo-
lysosomal compartment by binding to the LDL receptor at the cell
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surface, which is followed by endocytosis of the receptor complex.
Digestion of LDL by lysosomal hydrolases liberates cholesterol, which
is delivered to other cellular membranes through the action of the
proteins NPC1 and NPC2 by a not yet fully defined mechanism [30].
Cholesterol intercalates between saturated hydrocarbon chains of
phospholipids and may alter the physicochemical properties of the
membrane. Thus, lysosomal cholesterol content is able to influence
both sensitivity to LMP and lysosomal exocytosis [20,31]. Interestingly,
filoviruses such as the Ebola virus enter human cells after binding via
the cytosolic tail of NPC1 pointing to lysosomal proteins being novel
therapeutic targets for combating devastating infectious diseases [32].

Lysosomal Alterations in Disease
Advances in lysosome research have expanded the understanding of

the role of lysosomes in the pathophysiology of diseases. The lysosomal
storage diseases (LSD) include approximately 70 distinct disorders and
are characterized by a progressive accumulation of undegraded specific
substrates within the organelle due to deficiency of proteins involved in
lysosomal function or biogenesis [33]. Although individually rare, LSD
collectively account for 14% of all inherited metabolic diseases. LSD
are challenging to diagnose due to the rarity of the diseases and the
heterogeneity of disease manifestations. Noteworthy, recent studies
have observed that lysosomal alterations and malfunction also occur in
several common pathological conditions such as cancer and
neurodegenerative diseases. In brains from patients suffering from rare
early-onset lysosomal storage diseases, similar neurodegenerative
hallmarks are observed as in late-onset neurodegenerative diseases
such as Alzheimer's and Parkinson's diseases [34]. Moreover, patients
suffering from the LSD Gaucher disease have a higher risk of
developing Parkinson's disease [35], indicating a possible link between
these disorders. Neuronal ceroid liposuscinogenesis 11 arises due to
mutations in both alleles of progranulin, whereas frontotemporal
dementia occurs when a single allele is mutated [36]. A theory of a
general mechanism of dysfunctional clearance of cellular cargo
through the secretory-endosomal-autophagic-lysosomal-exocytic
(SEALE) network has been formed to explain the common underlying
feature relating lysosomal dysfunction to seemingly different diseases
[34]. In addition, a toolkit utilizing next generation sequencing (NSG)
for identification of DNA sequence variations in genes involved in
autophagy-lysosomal pathways was recently developed and named
Lysoplex. The specific selection of DNA regions belonging to about 900
genes of the autophagy-lysosomal pathway will improve the
identification of genetic heterogeneity and facilitated diagnosis [37]. To
treat LSD as well as common neurodegenerative diseases strategies for
increasing the rate of lysosomal degradation and clearance are needed.
Possible approaches that have been explored are to increase cathepsin
activity by suppression of cystatins, the endogenous inhibitors of
cysteine cathepsins [38], activation of TFEB [39] and suppression of
neuronal cell death by prevention of LMP through upregulation of
HSP70 [40], or cholesterol modulation [31]. In addition lysosomal
clearance may be enhanced by increased lysosomal acidification [41].

Cancer progression and metastasis are associated with striking
alterations in lysosomal compartments and tumor cells are highly
dependent on effective lysosomal function. Thus, elevated expression
of wildtype TFEB protein has been found sufficient for driving the
oncogenic mechanism [42]. Altered activity and location of lysosomal
proteases is central in tumors. Secretion of cathepsins into the
extracellular space can promote tumor growth through their
proteolytic effect on the basement membrane and activation of pro-

tumorigenic proteins [43]. On the other hand, cathepsin activity inside
the cell is linked to tumor growth inhibition. Cancer cells resistant
towards traditional therapies may be sensitive to agents that trigger
LMP and engage lysosomal cell death pathways [44,45]. Moreover,
several examples of passive ion trapping of hydrophobic weak bases
within lysosomes have been found. The effect of such lysosomal
sequestration of chemotherapeutic agents could reduce the
accessibility of these drugs to their target sites [46], whereas cationic
amphiphilic drugs that inhibit acid sphingomyelinase may selectively
kill cancer cells by promoting ceramide-mediated cell death [47].
Several examples of lysosome-targeted drug delivery system for
efficient killing of cancer cells have been suggested. Anticancer drugs
might be loaded into liposomes and then directed and enriched in
lysosomes through chemical modification as exemplified by
conjugation of the lysosomotropic octadecyl-rhodamine B [48] or
guanidinylated neomycin (GNeo) [49]. Moreover, sorbitol scaffold is
easily taken up by cells and can deliver anticancer drugs that are
released by cleavage of peptides that are substrates of cathepsin B [50].
Furthermore the lysosomotropic detergent O-methyl-serine
dodecylamide hydrochloride (MSDH), which show a pH dependent
assembly and disassembly, might be loaded with drugs at neutral pH
that is released when the vesicle reaches the acidic pH of the lysosome
[51].

Taken together, a wide range of possible disruptions in lysosomal
function have been identified which implies the central position of the
lysosome in pathogenic processes. It points to the importance of
developing therapeutics targeted toward these mechanisms. Although
several recent important achievements in our understanding of
lysosomal function, the challenge how to use the knowledge to
improve future therapeutic treatment of diseases still remains.
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