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Abstract
Spermatogenesis is an essential biological process to produce functional male gametes from undifferentiated 

progenitor cells throughout the reproductive age. Success in a series of differentiation of stem cell-like progenitor 
cells is a complex cascade and involves sophisticated regulations by various types of molecules in the developing 
germ cell. In this review, we will discuss the role of different groups of germline biomolecules, including some protein-
coding genes, microRNAs, piRNAs and long non-coding RNAs (lncRNAs) in leading to a complete cycle of mouse 
spermatogenesis. We will also share our perspective on future research opportunities on lncRNA regulations in 
spermatogenesis. 

Development of male gametes in mammals is regarded as one of the most efficient biological processes, which 
is characterized by a continuous production of sperms from puberty till the end of reproductive age, which lasts for 
more than a half of male lifespan. It would not be possible to achieve successful spermatogenesis without numerous 
regulatory molecules in germ cells accomplishing their functions. We will discuss in the following parts how four types 
of regulatory molecules are so important in different stages in spermatogenesis.
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Pre-Spermatogenesis Stage - Formation of Spermatogo-
nial Stem Cells

It is well accepted that Spermatogonial Stem Cells (SSCs) are the 
progenitor cells that finally give rise to mature sperms in reproductive 
age, while SSCs are formed from gonocytes at a period before 
spermatogenesis takes place. Take mice as a model: since shortly after 
birth, gonocytes inside the seminiferous tubules migrate from the 
lumen to the basement membrane, a process known as homing [1]. A 
successful homing depends on adhesion molecules like β1-integrin [2], 
Kit [3], and Sox8 [4], which are expressed in both the gonocytes and 
Sertoli cells for cell-cell attachment and directional migration. 

In few days after homing, gonocytes residing on the basement 
membrane develop to Spermatogonial Stem Cells (SSCs), and the first 
wave of spermatogenesis starts. Current model for SSC development 
suggested that single type A spermatogonia (Asingle or As), which 
appear at 6 days-of-age still retain the stemness: ability to undergo self-
renewal to maintain the As population and to differentiate. A complete 
spermatogenesis takes around 35 days for an SSC differentiates to 
spermatocytes, spermatids, and terminally differentiated mature 
spermatozoa (sperms) in mice [5]. In order to achieve a continuous 
production of mature and functional sperms throughout the 
reproductive age, SSCs have to maintain a balance between self-renewal 
and differentiation into daughter cells. 

Experiment Design to Evaluate Intrinsic and Niche 
Factors

Generally speaking, both intrinsic factors of progenitor cells and 
niche factors affect sperm production. It has been observed in many 
experiments that the number and function of SSCs declined with age 
[6,7]. However, during normal development, both niches and intrinsic 
factors keep changing with time, imposing difficulties in accessing the 
effect of individual factors. Failure of maintaining a true spermatogonial 
stem cell line by in vitro setup also disfavors our investigation on SSC 
biology. 

To study the effect of intrinsic factors under consistent niche, 

Ryu et al. designed the serial transplantation experiment in mice [7]. 
Briefly, spermatogonia from donor mice were isolated and injected 
to seminiferous tubules of recipient mice, whose own endogenous 
spermatogonia had been depleted by busulfan treatment. The recipient 
mice were young adults, always around 12-week-old at transplantation, 
in order to supply a favourable environment in the seminiferous 
tubules for spermatogonial proliferation and differentiation. Since 
the transplantation process was repeated every three months, the 
spermatogonia were kept in a relatively constant and favourable SSC 
niche. In such setting, the proliferation ability of rodent spermatogonia 
was found to be quite consistent through the first to the ninth 
transplantation, equivalent to over 1,000 days of cell age [1,7,8], 
indicating SSC niche plays an essential role in sperm development. At 
the same time, a gradual decrease in SSC number was also observed [8], 
suggesting possible regulation by intrinsic factors during aging.

Proteins that Regulate Spermatogenesis and Mark the 
Differentiation Stage

Spermatogenesis is a complicated process and each step is strictly 
regulated. As recently reviewed by Bettegowdas and Wilkinson, a 
variety of transcriptional factors, such as HSF2 in meiotic stages, and 
Ovol1 in proliferation of spermatogonia, have been shown to guarding 
the progression of spermatogenesis by direct interaction with DNA and 
control the expression of differentiation related genes [9]. 

Some factors are shown to regulate spermatogenesis by inducing 
histone modifications. For instance, Jmjd1a is a testis specific histone 
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demethylation factor which regulates gene expression during meiotic 
phases of spermatogenesis by decreasing H3K9me1 and H3K9me2 
levels [10]. Knockout of Jmjd1a caused decreased expression of a 
number of genes essential for spermatid development and thus defects 
in spermatid elongation [10].

Another histone modifier that regulates spermatid elongation is 
Pygo2 protein, which is shown to promote global acetylation. With 
its Plant Homeodomain (PHD) finger domains, Pygo2 induced 
histone H3 remodeling and affected downstream gene expressions. 
Reduction in Pygo2 level distorted the chromatin condensation during 
spermiogenesis and hence leading to infertility [11]. 

In addition, some proteins are able to bind to mRNA transcripts, 
either stabilize or destabilize the mRNA for post-transcription 
regulations. Gonadotrophin-Regulated Testicular RNA Helicase 
(GRTH) is one of this category of proteins. In mice spermatocytes, 
GRTH was found to selectively bind to mRNAs of some pro- and 
anti-apoptotic factors and regulate their half-life, finally leading to a 
controlled apoptosis [12]. Knockout of GRTH led to an increase in 
mRNA level of apoptotic genes, such as caspase 3 and caspase 8 and 
increased the proportion of apoptotic cells.

Besides, there are also a number of protein markers for 
spermatogenic cell identification [13]. For example, Gfrα1, Pou5f1 
(also known as Oct4), and Plzf are common molecular phenotypes 
for undifferentiated type A spermatogonia including Asingle, Apaired 
and Aaligned, while Kit, Sohlh1, and Ngn3 are cell surface markers for 
differentiating spermatogonia. A recent report also revealed that 
Nanog and Pou5f1 are two markers specifically for Asingle, the highly 
proliferative population of undifferentiated type A spermatogonia [14]. 

For spermiogenesis particularly, Arp3 has been shown to be 
essential for actin architecture and facilitate spermatid maturation in 
rat model [15], while Esp in Sertoli cells regulates the detachment of 
elongated spermatids [16]. These two proteins also seem to be key in 
manipulating the actin dynamics and keeping the integrity of Blood-
Testis-Barrier (BTB) [17], which is crucial for maintaining the niche for 
spermatogenesis.

Inhibitory Pathways by MicroRNAs at Different Stages
Apart from protein-coding genes, the non-coding part of 

transcriptome also plays an active regulatory role in spermatogenesis, 
where the best-studied member is micro-RNA (miRNA). MiRNAs are 
actively expressed in adult mouse testes [18]. After transcribed as pre-
miRNAs and processed by Drosha or Dicer protein, mature miRNAs 
of 21-25 nucleotides in size from the RNA-Induced Silencing Complex 
(RISC) with appropriate Argonaute proteins. This RISC then binds 
to an mRNA that contains a sequence complementary to the miRNA 
sequence, repressing the translation or even initiate mRNA degradation 
[19-21]. Kotaja’s team showed miRNA accumulates with Dicer and 
Argonaute proteins in chromatoid body during meiotic and post-
meiotic stages of spermatogenesis, suggesting important regulation by 
miRNA [22,23]. Hayashi’s group supported this idea by demonstrating 
dicer-knockout primordial germ cell and spermatogonia exhibited 
poor proliferation [18]. They also showed an early termination of 
reproducibility and a significant depletion of sperm production in 
8-month-old mice with dicer-deficient testes [18], illustrating miRNAs 
are crucial for spermatogenesis to initiate and to be maintained through 
reproductive life. Since then, there is a boost in the number of researches 
on the role of specific miRNAs in spermatogenesis carried out. Some 
examples of validated miRNAs in each stage of spermatogenesis are 
summarized in Figure 1.

Mir-18 is another miRNA highly expressed in male germ cells. It 
was found that mir-18 can regulate heat shock factor 2 (HSF2), a well-
known transcription factor regulating gametogenesis, by binding to the 
3’UTR of HSF2 mRNA [24]. Knockdown of mir-18 causes up-regulation 
of HSF2, and alters the relative abundance of the downstream targets of 
HSF2. This suggested that, just similar to other systems, the non-coding 
transcriptome indeed participates actively with the established protein-
centric regulatory network.

A recent report described a mechanism by which miR-21 regulates 
the fate of mouse SSC. MiR-21 is shown to preferentially expressed 
in Thy1-enriched SSCs. Inhibition of miR-21 promotes apoptosis 
and reduces self-renewal of SSC, suggesting they are vital for normal 
self-renewal [25]. MiR-221 and miR-222 were found to induce Kit 
expression in mouse undifferentiated spermatogonia and hence 
promote differentiation of the progenitor cell [26].

Another recent study demonstrated that two miRNA clusters, 
namely Mir-17-92 (Mirc1) and mir-106b-25 (Mirc3) may carry important 
regulatory role in spermatogenesis. In Thy1-enriched spermatogonia, 
these two miRNA clusters showed significant down-regulation upon 
retinoic-acid induced differentiation [27]. Further in vivo study clearly 
showed Mirc1-knockout mice at reproductive age had smaller testes 
with decreased sperm formation. Moreover, an up-regulation of Mirc3 
was observed in Mirc1-knockout mice, suggesting these two miRNA 
clusters work closely together in sperm cell regulation [27]. 

Other experimentally validated regulatory miRNAs related 
to the spermatogenesis include miR-34c which up-regulates some 
lineage markers [28], miR-15a in early spermatogenesis regulation 
by binding Ccnt2 [29], miR-23b in the translation regulation of Pten 
and Eps15 in Sertoli cells [30], and miR-469 that binds TP2 and 
Prm2 mRNA [31]. Furthermore, clinical observation showed many 
microRNAs are down-regulated in patients with non-obstructive 
azoospermia (NOA), including miR-17-92 [32], miR-371/2/3 cluster 
[32], mir425 and miR191 [33], miR-34c-5p, miR-122, miR-146b-5p, 
miR-181a, miR-374b, miR-509–5p, and miR-513a-5p [34]. The precise 
molecular regulatory mechanisms of these short ncRNAs are not 
yet fully understood. This wide range of evidence demonstrated the 
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Figure 1: Validated microRNA candidates involved in spermatogenesis 
Spermatogenesis is closely regulated by non-coding RNA, including: (a) Self-
renewal of undifferentiated spermatogonia (undiff. Spga): miR-21 [25], miR-
34c [25]; (b) Differentiation of spermatogonia (Diff. Spga): Mirc1 [27], Mirc3 
[27], Mirlet7 [71]; (c) Differentiation to spermatocytes (Spcy): miR-15a [29], 
miR-184 [72]; (d) Meiotic division of spermatocytes to spermatids (Sptd): miR-
18 [24], miR-34b, miR-34c [28], miR-184 [72], miR-383, mir-449, miR-469 [31]; 
(e) Differentiation of spermatid to form spermatozoa: miR-34c [28], miR-469 
[31].
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non-coding transcripts are playing a significant role in the regulatory 
network of spermatogenesis.

Piwi Protein and Piwi-Interacting RNA
Another large family of small RNA is the Piwi-interacting RNA 

(piRNA), most with length between 24-31 nucleotides. piRNAs were 
detected in testes of mice only after 20 day post partum (dpp) [35], at 
which the first wave meiosis is about to take place, suggesting piRNA 
plays important roles in meiotic regulation. Similar to interaction 
between miRNAs and Argonaute proteins to form RISC, piRNAs 
form functional complex, named as PIWI-interacting RNA complex 
(piRC) with PIWI interacting proteins, another clade of Argonaute. 
This machinery was first discovered to play a critical role in germline 
development in Drosophila model back to late 1990s [36-38], and 
is highly conserved from worms to mammals through the evolution 
[35,37]. The later discovery from high-throughput sequencing data 
found that most piRNAs of distinct clusters were originated from a 
single long primary transcript [35,39], which will undergo further 
complicated but not well-defined processes to produce numerous 
piRNAs. As a result, over 80% of piRNAs are transcribed from only 42 
genomic clusters, and up to over 2,000 piRNAs can be transcribed from 
a genomic length of 35-80 kilo base-piars (kbp) [39-41]. Furthermore, 
these clusters were dispersed in different chromosomes, ranging from 1 
to 14 clusters per autosome were identified.

There are three types of mouse PIWI (Miwi) proteins, namely Mili 
[42], Miwi [43], and Miwi2 [44] identified with different expression 
profile in along spermatogenesis (Table 1) [45]. Mili is specifically 
expressed from early stages up to pachytene spermatocytes, Miwi in 
spermatocyte and spermatid stages, while Miwi2 is only detected in 
fetal stage from embryonic day 14 to postnatal day 3 [46]. These proteins 
were found to be involved in spermatogonial stem cell maintenance, 
meiosis and spermiogenesis [35]. 

One possible regulatory mechanisms of Piwi-interacting RNA 
complex is through interaction with mouse vasa homologue (Mvh) 
protein. Since a similar phenotype of Mili-null and Mvh-null mice was 
observed, and the localization of Mvh altered after knocking out of Mili 
[35], suggesting Mvh may function through interaction with Mili and 
Miwi [42]. 

Another mechanism of piRC regulation was by protecting the 
germline genome from attacks by Transposable Elements (TEs) during 
meiosis [46-48]. TEs are mobile DNA fragments which are able to 
replicate and translocate themselves by transposition process, regardless 
of host genome replication machinery. If this process is uncontrolled, 
TE will disrupt the integrity of host genome and influence normal 

gene expressions and protein synthesis. In normal somatic cell, TE 
activity is limited by epigenetic modifications like DNA methylation 
and heterochromatin formation [49]. However during germ cell 
production, these epigenetic protections have been partially removed 
during meiotic reprograming, leaving the transposition more active.

Bioinformatics analysis showed a substantial anti-sense correlation 
between piRNA and TEs in Drosophila [50]. Once a transposon is 
actively transcribed, it is susceptible to binding and restriction by 
RNP complex formed by PIWI protein and piRNA with an anti-sense 
sequence. The restriction produces a sense piRNA, which will be loaded 
to Agonaute 3 to form a RISC. This RISC will in turn act on the long 
precursor piRNA to cleave out the anti-sense piRNA. This model is 
called the ping-pong cycle [51], by which both sense and anti-sense 
piRNA will be amplified in a positive feedback loop in response to any 
activity in TE. It is believed that mammalian piRNAs are also amplified 
by similar mechanism [35]. Although the ping-pong model in mice is 
recently challenged by works from Beyret’s group [52], which showed 
the anti-sense piRNAs is the predominant species, the importance of 
Piwi proteins and piRNAs in controlling TE invasion has not been 
questioned. 

Long Non-Coding RNA: The Next Blackbox to Open
Based on all above discussions, which shows both protein-

coding genes and short non-coding RNAs are active in regulating 
spermatogenesis, it is reasonable to anticipate that some longer 
non-coding RNA transcripts are also involved in the regulation of 
spermatogenesis. 

Long non-coding RNAs (lncRNAs) are one of the most abundant 
ncRNA families, although its functional annotation lags far behind 
other families. While short RNAs still rely on partnership with proteins 
for regulatory functions, lncRNA is more independent in carrying out 
its own functions. Reported regulatory mechanisms by lncRNAs are 
versatile, which include direct binding to proteins and modulating the 
level of activated form [53], direct binding to antisense mRNA for post-
translational regulations [54], recruiting polycomb repressive complex 
for transcriptionally repressive chromatin modifications [55], acting as 
competing endogenous RNA to inhibit the function of miRNA [56], 
being the precursor other small RNA [57], and directly bind to X 
chromosome for chromosome-wide inactivation [58,59].

Meiotic recombination hot spot locus (mrhl) RNA is so far the only 
published functional lncRNA in mouse spermatogenesis. It is a 2.4-kb 
mono-exonic lncRNA in mouse chromosome 8, upstream to a pachytene 
repair site and located within a 7.2 kb fragment of recombination hot 
spots [60], and thus it is named after this genomic location. Further 

Mice Piwi protein
Mili Miwi Miwi2

Year of gene discovery (first 
publication) 2004 2002 2007

Stages of expression [46,47] From gonocyte to pachytene spermatocyte 
(post-natal pre-pachytene stage)

From pachytene spermatocyte to round 
spermatid (pachytene stage) 14 dpc to 3dpp (fetal stage)

Outcomes in male germline with 
gene knockout or mutant [45]

Arrest in early pachytene spermatocyte. 
Increase in germline apoptosis. Decrease in 
testes size. More piRNA loaded to Miwi2.

Arrest at round spermatid. Decrease in testes 
size. Changes in Mvh localization.

Arrest in leptotene spermatocyte. 
Increase in germline apoptosis. Germ 
cell depletion.

Molecular mechanism

Able to form piRC with piRNA. The piRC will target DNA or RNA with sequence complementary to the piRNA and induce inhibition and 
degradation.

Bind and regulate Mvh, an factor essential for 
early spermatocyte stage [42]

Bind and regulate Mvh.
TE control.
Amplify responsive piRNAs by ‘ping-pong’ 
cycles.

TE control. [44]
Amplify responsive piRNAs by ‘ping-
pong’ cycles.

Table 1: Comparison on three groups of Piwi proteins in mice.
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study showed mrhl RNA regulates spermatogenesis potentially by two 
pathways. First, acting as a precursor of microRNA, mrhl RNA could 
be restricted by Drosha to form an 80-nucleotide RNA intermediate 
[61]. Both RNAs were localized in nucleoli of GC1 spermatogonia cell 
line, suggesting possible interactions with chromatin [61]. Second, mrhl 
RNA inhibited the Wnt signaling pathway through binding to p68 [62]. 
However, the functional effects on spermatogenesis of this lncRNA 
remain elusive, and we believe there are many other lncRNA regulators 
for spermatogenesis. 

To understand the developmental programs in male germ cell 
development, our group previously applied mouse spermatogenesis 
and gonadogenesis as model systems to study the regulation of cellular 
differentiation and proliferation in mammalian development. We 
applied SAGE to examine the transcriptomes of male germ cells [63] 
and gonads [64], where all data are accessible through GermSAGE [65] 
and GonadSAGE [66] databases.

In the spermatogenesis study, the transcriptomes of germ 
cells, namely spermatogonia, pachytene spermatocytes, and round 
spermatids, were compared at different differentiation stages. SAGE 
captures all polyadenylated transcripts in the transcriptome, and 
therefore it offers a comprehensive and unbiased method for novel 
discovery not found in microarray platforms. Concordant to a similar 
study in rat spermatogenesis [67], the germ cell transcriptomes of 
different stages were quite unique, with approximately 30% SAGE tags 
were specific at each stage [63,65,68]. These stage-specific tags fell in 
both coding and non-coding regions. Bioinformatic analyses further 
revealed the dynamic transcriptional regulation of various transcription 
factors and promoter elements, and the involvement of stage-specific 
gene networks [68]. 

The resolution of GermSAGE data was recently increased by 
incorporating expression data from whole-genome tiling microarrays 
[69]. Like other high-resolution genomic data, this ‘big data’ created 
a great opportunity and challenge to current genome biology research 
[70]. Importantly, over 45% of transcripts were not annotated in both 
platforms, and their exact functions are not clear. We hypothesized Age-
lncRNA species were contained in the un-annotated population and 
have recently identified two Spga-specific lncRNA candidates, known 
as Spga-lncRNA family. Both demonstrated significant differentiation 
inhibition in vitro in model, suggesting it may be important in 
maintaining stem cell state in SSCs. We also observed both lncRNA 
candidates contain retinoic acid binding sites on the promoter region 
and proved to be functional by comparing the luciferase activities of 
different deletion constructs (data not shown). Both lncRNAs showed 
to repress both RNA and protein expression of Stra8, a key gene for 
initiation of differentiation of SSCs. The validation experiment is 
currently ongoing.

Conclusions and Perspectives
Spermatogenesis is one of the most important biological processes 

concerning continuation of a species. Proteins and non-coding RNAs 
are regarded as the key regulators for this complex and highly regulated 
process. Although the regulations by proteins, miRNAs and piRNAs 
have been better studied, more novel pathways are still coming out. 

Based on our current understanding in non-coding RNA biology, we 
expect the current findings of lncRNA regulations in spermatogenesis 
are vastly incomplete. Here, we hypothesize that lncRNAs are actively 
involved in age-dependent regulation in SSC aging. If this hypothesis 
is correct, the current concepts of molecular regulation in SSC 
development need to be re-assessed. 
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