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Motivation
A number of challenges in atomic structure in the coming decades 

lie where the techniques of the past appear to be wanting. The most 
notable ‘up to the minute’ exigencies that have taken center stage are the 
complications of microscopic specimen size and soft order [1,2]. The 
last problem surfaced with Dan Shechtman’s discovery of quasi-crystals 
[3,4]; systems in which the diffraction pattern defy Bravais classification 
or the assignment of Miller indices. It exposed a severe inadequacy in 
Laue-Bragg’s famously successful technique in crystallography [5-9]. 
Furthermore new advances such as high intensity coherent radiation 
beams, ultrashort exposure and extremely fast detectors, coupled with 
the desire for atomic resolution in real time, demands a reassessment of 
the premises of classical crystallography; also it is imperative to find the 
way to an alternate approach that is indifferent to long-range order and 
baggage from the associated reciprocal space, leverages the principle 
of ‘reflection-diffraction duality’ to embody Bragg’s computationally 
facile top-down approach with Laue’s local bottom-up perspective, and 
(ii) covers a definition of crystal matter that is more inclusive especially 
the complex regime of partial loosening of order, but not complete
disorder.

Overview
The Nobel winning discovery of ‘Laue spots’ in 1912 is one of the 

pivotal breakthroughs in history [10]; to this day, over a century later 
its implications continue to reverberate through the sciences. In 1925 
Alver Gullstrand, Chairman of the Royal Swedish Academy of Sciences 
would declare [11], “ This epoch-making discovery [Laue spots], which 
not only bore upon the nature of X-radiation and the reality of the 
space lattice assumed in crystallography, but also placed a new means 
of research into the hands of Science …”. Paradoxically, although Max 
Laue anticipated the ‘Laue effect’, but his new 3-dimensional vector 
diffraction theory had some serious flaws [12]. As a matter of fact, this 
theory shockingly misinterpreted the observed patterns. Nevertheless 
out of Max Laue’s fecund but imperfect analogy of three-dimensional 
diffraction gratings, wave scattering has emerged as a blockbuster 
success in a wide range of technologies including low energy 
electron diffraction (LEED), x-ray crystallography (XRD), and x-ray 
fluorescence (XRF). Techniques helped reveal the geometric structures 
of the simplest salts as well as the complex double helix spirals of the 
two strands of polynucleotides in life’s genetic code, deoxyribonucleic 
acid (DNA), netting dozens of Nobel Prizes in Physics, Chemistry and 
medicine.

A surprise came in the early 1980’s with Dan Shechtman’s 
perplexing discovery [3,4] of spot patterns that disturbed the certitude 
of classical crystallography. This quasi-crystal puzzle would force the 
International Union the International Union of Crystallography to a 
redefinition of crystals in 1991 [13]. And in 2011 Shechtman would 
be honored with the Nobel Prize for chemistry. Here we query where 
Laue’s mathematics slipped and where Bragg’s formula really and 
exactly fits into classical crystallography. Especially re-examine the 
legacy of Miller indices and the dual space and prompt an improved 
approach that accommodates current trends and future needs of 

structure analysis; particularly the concerns of imperfect order, real-
space configuration, microscopic specimen size, and extremely short 
exposures to high intensity beams [1,2,14].

Introduction
In 1912 Max Laue an expert and lecturer of optics in Arnold 

Sommerfeld’s theoretical physics Institute at Ludwig-Maximilians-
University (LMU) in Munich, Germany, theorized that if solid crystals 
comprise of ordered, three-dimensional packing of atoms, then 
diffraction spots would be produced by passing x-ray waves

through crystals.. In his Nobel Prize lecture [10] Max von Laue 
described the run up as

“the acknowledged masters of our science, … entertained certain 
doubts about this viewpoint…. A certain amount of diplomacy was 
necessary before Friedrich and Knipping were finally permitted to carry 
out the experiment “.

After Laue’s presentation at the Berlin Physical Society on June 
8 1912, his former professor Max Planck, a close scientific associate 
and long-time friend Albert Einstein, the general relativist Karl 
Schwarzschild (of Black hole fame) and others applauded Laue’s 
prescience.

Albert Einstein

To explain his effect, Max Laue an authority in physical optics 
proposed that real crystals coherently scatter off x-ray waves, as would 
a three-dimensional diffraction grating. Notice, that until this time only 
one and two-dimensional cross gratings were in existence, although 
the later was of little practical use. But a 3-d grating was totally a new 
invention. In his Nobel lecture quoted earlier, [10] Laue describes it as 

“at that point that my intuition for optics suddenly gave me the 
answer: lattice spectra would have to ensue”.

Guided by an analogy with one and two-dimensional optical 
gratings ‘generalized’ to the third dimension, (Figure 1) Laue demanded 
that at each spot the wave and lattice vectors must satisfy the following 
set of three ‘fundamental equations’, as follows

1 1 1.( ) ( ) . (2 )f i f f i i xa k k a k cos k cos a k n− ≡ − = ∆ = πφ φ             (1)

Likewise
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2 2 2 1cos cos cos+ + ≡α β γ                  (4)

In essence in the space we live in it is impossible to impose three 
Cartesian components independently of each other as seemingly 
required by Laue’s three fundamental equations 1-3. Consequently, 
there is a critical theoretical difference between 2-d and 3-d gratings. 
Allvar Gullstrand, [11] quipped 

“Inasmuch as this is a three-dimensional grating, its effect is in 
essential respects unlike the effect of the previously known line and cross 
gratings”.

Reaction to Laue’s Effect
William Henry Bragg (WHB) the erstwhile professor of physics at 

Adelaide, Australia and an acknowledge authority in x-rays, who by 
this time was a physics professor at Leeds, in UK along with his son 
William Lawrence Bragg (WLB) took notice of Laue’s effect [16-20]. So 
did Ernest Rutherford’s atomic group at Manchester [21,22]. Especially 
Rutherford’s protégé the young and brilliant Henry Gwyn Jeffreys 
Moseley, Henry Moseley was particularly critical of Laue’s theory and 
in a letter to his mother, he wrote “[Laue] gave an explanation which 
was obviously wrong”.

Truth be told, Moseley was notorious for his critical attitude 
towards fellow researchers as-well-as his own doctoral advisor 
Earnest Rutherford, ‘son of a flax farmer’ from New Zealand, a small 
inconsequential colony in the remotest frontier of the then vast 
British Empire. Nevertheless Moseley’s self-confidence and genius 
was recognized at Manchester and despite his initial hesitations about 
jumping on the crystal structure band wagon, Rutherford would let 
Moseley temporally move to Leeds to learn x-ray spectroscopy, then 
being invented and developed by WHB. Perhaps not so coincidentally, 
at the very same time June-August of 1912 Rutherford’s visiting ‘post-
doc’ Niles Bohr, would also abruptly change his previous research 
plan and get busy with a new theory for a stable quantum atom. 
Mosley made excellent use of his stay at Leeds and upon his return to 
Rutherford’s laboratory back in Manchester atom he would soon invent 
x-ray fluorescent spectroscopy (XFS) and apply it to discover his name 
sake Moseley’s Law, which relates the frequency (energy) of Barkla’s 
characteristic x-ray emission from the atom with the nuclear charge 
of the chemical element. As a matter of fact in the process discovering 
atomic number (Z) and identifying Z with the nuclear charge of the 
atom. He was a nominee for the Physics Nobel Prize in both 1914 and 
1915 and certainly would have been a recipient; because in the same 
(1925) lecture [11] Alvar Gulstrand also announced that 

“the greatest success by the young scientist Moseley… He further 
discovered … what is known as the atomic number, … has proved to 
distinguish the elements better than the atomic weight … Moseley fell at 
the Dardanelles before he could be awarded the prize “.

Henry Moseley is recognized as one of the youngest pioneers in 
nuclear physics. However, it was WLB who proffered a new explanation 
for Laue’s effect that correctly accounted for all the observations and 
paved the way to atomic crystallography. Incidentally, at that time 
Bragg was also a student of Joseph John Thomson (Cavendish) and 
William Jackson Pope (Chemistry) at Cambridge University. Earlier 
Professor Pope [23] along with the well-known British amateur 
geologists William Barlow [24] had already developed close packed 
model structures of various crystals. Barlow was also the first to 
note the differences between simple cubic and of face centered cubic 
arrangements of atoms, a point that Laue had completely missed in his 
analysis, described earlier (Figure 2). William Lawrence Bragg had an 

3 3. (2 )za k n∆ = π                       (2)

and

3 3. (2 )za k n∆ = π                       (3)

The ‘dot’ in eqs. 1-3, stand for scalar product, angles are measured 
with respect to the crystal axes and the Laue indices or order numbers 
nx, ny and nz, are three independent (typically small but not necessarily 
distinct) integers. In Laue’s bottomup description, short-range local 
order is paramount; the effect of the entire crystal

is modeled by the actions of just the few atoms included in the 
kernel.

Laue’s Achilles heel
Incredibly, it was Max Laue’s own 3-d diffraction grating theory 

that was problematic and consequently failed to interpret Friedrich and 
Knipping’s experimental data [12]. As a matter of fact simultaneously 
satisfying the dispersive equations along all the three Cartesian axes 
was overwhelming and Laue’s results came out erroneous, including a 
wrong answer for the crystal density! Incidentally, Laue was aware of 
some of the problems with his theory, because in his Nobel lecture he 
stated, 

” … the three specified numbers… I made no secret of the fact that I 
could not attribute to these values the same degree of reliability…”

But Max Laue did not realize that he did not properly constrained 
the system of equations and lacked Euclidean length invariance; so the 
theory was producing too many solutions [12]. As a matter of fact, it is 
not generally known that Euclidean geometry and dimensionality of the 
space-time have a significant influence on what physical phenomena 
are permissible; vector product and Huygen’s principle for wave are 
two classic peculiarities of 3+1 dimensional space-time [15]. In 3+1 
dimensional space-time, generalizing from one-dimensional to 
two-dimensional gratings is ‘trivial’ because the angular position of 
any maximum is completely determined by the grating constant in 
that particular direction. For example, two cross gratings with same 
grating constant, b, along y direction but different values of a (along 
the x-axis), the nx=2 and ny=1 maximum will be produced, at exactly 
the same angle β, but at two different values of α, as determined by 
equation 1. The reader will immediately notice that the angle γ wrt 
to the z-axis is also different because the angles α, β and γ are not 
independent, but interlinked by the square of the direction cosine 
rule, as follows,

 

Figure 1: Laue diffraction kernel in an orthorhombic crystal and a ray (OO”) 
in three-dimensional Euclidean space. The four atoms, the Cartesian axes 
and the ray define three planes, namely XAOO”, YBOO” and ZCOO”, 
the angular coordinates of OO” are the three angles (α, β, γ). The lattice 
vectors are a, b and c respectively.
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empirical and more hands on approach. Noting that when he turned 
the crystal target by 3o, the whole spot pattern rigidly rotated by 6o, and 
knowing that generally diffraction patterns follow some complicated 
trigonometric dependence, Bragg realized that certain planner surfaces 
in the

crystal must be (partially) reflecting off the x-rays. Apparently, C. 
T. R. Wilson of cloud chamber fame had a part in this, because in his 
first paper [16] published in November of 1912 WLB writes, 

“… it was suggested to me by Mr. C.T.R. Wilson that crystals with 
very distinct cleavage planes, such as mica, might possibly show strong 
specular reflection of the rays. On trying the experiment it was found 
that this was so… left no doubt that the laws of reflection were obeyed… 
bending the mica into an arc, the reflected rays can be brought to a line 
focus … yet the effect almost certainly not a surface one… ”.

Bragg’s focus was on the large-scale geometry, specifically atomic 
planes but not on local atomic order. He introduced the practice 
of identifying a spot by the Miller indices (h, k, l); he also proffered 
the eponymous formula or Bragg’s law for the wavelength of x-ray 
associated with a spot as,

𝑛𝜆=2𝑑B𝑠𝑖𝑛 𝜃   (5)

Where θ is the ‘glancing angle’ and dB the inter-planer distance 
and n is the Bragg integer. In equation 5, wave dispersion is effective 
only along dB a direction perpendicular to the planes. Freed from the 
direct considerations of 3-dimensional lattice periodicity, Bragg’s law 
also dispenses of Laue’s desperate conjectures including the infamous 
‘missing spot’ proposal, invoked to interpret the patterns recorded 
by Friedrich and Knipping [12]. Unsurprisingly Bragg’s formula is 
computationally frugal. Once again Alver Gulstrand [11] lauded,

“…It was by a stroke, brilliant in its simplicity, that the Englishman 
W.L. Bragg succeeded in replacing von Laue's comparatively complicated 
theory of the effect of the crystal lattice by an extremely manageable
formula …”.

In classical crystallography Bragg and Laue’s formulations are 
reconciled by imposing a set of stringent selection rules in this 
dual space, such that each Bragg reflection spot is associated with a 
reciprocal lattice node. In his publications Bragg introduced Miller 
indices for calculating the inter-plane separation distance d Bragg. 
Reciprocal lattice parameters remain central in crystallography. Legacy 
of the dual space is also apparent in textbooks such as Solid State 
Physics, (p 99-100) by Neil W Ashcroft, N David Mermin [25] where 
it is explained that “a Laue diffraction peak corresponds to a change in 
wave vector given by the reciprocal lattice vector K corresponds to a 
Bragg reflection from the family of direct lattice planes perpendicular 
to K. The order, n, of the Bragg reflection is just the length of K divided 
by the length of the shortest reciprocal lattice vector parallel to K.” 
Similarly in Principles of the Theory of Solids, the author JM Ziman 
[26] writes, (pp: 52-54) that “To satisfy these geometrical conditions in 
reciprocal space we construct the Ewald sphere with radius OP equal to 
the incident wave-vector …”. It is crucial factor for the convergence of
Laue’s diffraction with Bragg’s reflection is that the scattering system
be perfectly crystalline and of sufficiently large extension to posses a
reciprocal space.

Quasi-Crystals Challenge Bragg
For almost three-quarters of the last century Bragg’s eponymous 

formula would remain famously unchallenged. Nevertheless, 
particularly because of its heuristic or semi-empirical rationale, many 

experts take Bragg’s Law as an ansatz to Laue’s diffraction theory; for 
instance the noted author Charles Kittle writes “[Bragg] is simple but is 
convincing only because it reproduces the results of Laue” [27]. Bragg’s 
law was severely pushed back from the experimental side as well by 
Dan Shechtman discovery of the illicit five-fold-symmetry in electron 
diffraction patterns of some rapidly quenched metallic alloys. Upon his 
initial observation, Dan Shechtman, had reportedly blurted out in his 
native Hebrew ka,"Eyn chaya zo," (there can be no such creature).

These quasi-crystals are out of bounds of the conventional Bravais 
lattice classifications and the spots for these puzzling systems cannot 
be Miller or Bravais indexed. Consequently, neither reciprocal lattice 
concepts nor Bragg’s law are applicable to quasi-crystals. Eventually the 
accumulated experimental evidence compelled the International Union 
the International Union of Crystallography to a redefinition of crystals 
[13]. However, the occurrence of the forbidden symmetry would be 
too perplexing for some of the leading authorities in crystallography, 
in particular the two-time Nobel winning chemist Linus Pauling. 
“Danny Shechtman is talking nonsense, there are no quasi-crystals, just 
quasiscientists."

- Linus Pauling

Lessons from History
The 3-d diffraction grating failed to correctly predict the spots 

pattern. But Laue’s bottom-up theory is based on the tiniest periodic 
structure, hence the most diffractive part of the whole system– Max 
Laue’s scheme zeroes in on the most relevant length scale. In this sense, 
Laue was absolutely right- a small organization of atoms and a large 
crystal with perfect translational order would both produce spots, there 
can be no question about that. Laue missed important details but had 
a very fruitful idea. So our first lesson should be as follows-“It is more 
important to be fruitful than correct” - A.N. Whitehead On the other 
hand Bragg’s heuristic law of two-dimensional atomic planes correctly 
solve structure of perfect crystals. Coincidentally, in 1914 Max von 
Laue was awarded the Nobel Prize for physics with the official citation, 
"for his discovery of the diffraction of X-rays by crystals". Apparently 
Laue was fully cognizant of the success of the interference description 
and titled his Nobel Lecture [10] as “Concerning the Detection of X-ray 
Interferences”! A system with long-range order may not exist without 
short-range order, although localized orderly regions may co-exist in 
a disordered system. As a result Bragg’s law fails in quasi-crystal, i.e., 
systems with short-range order that lack longrange organization.

This brings us to our second lesson, the principle of ‘reflection-
diffraction duality’, that is regardless of the mechanism that bring 

Figure 2: In Bragg’s proposal, the highly penetrating X-rays are partially 
reflected by planes of atoms (two planes P and P’ shaded in light blue).
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the wavelets or contribute to the deviation from the rectilinear wave 
propagation, maxima are obtained only when (where) waves with the 
correct phase conditions constructively superpose. Hence, diffraction 
explains spots from quasi-crystals whereas specular reflection is the 
description for perfect crystals. As a matter of fact, without explicitly 
invoking reflection-diffraction duality this idea of is often implied; for 
instance the section on ‘crystal diffraction’ a celebrated textbook [28] 
describes the relevant physics of wave scattering process as reflection, 
without ever using the word ‘diffraction’, not even once in the entire text!

Summary
Upon interaction with atoms in a specimen, waves of appropriate 

phase difference give rise to maxima; the geometric pattern of the 
maxima provides a faithful map of the spatio-temporal distribution 
of the atoms. The famous Bragg’s law of classical crystallography is 
extremely facile and productive but requires perfect crystal specimens. 
Furthermore lacking a firm theoretical foundation has been a weakness 
of Bragg’s law. Structure analysis without Bragg’s law is possible in 
principle but correctly taking into account the diffraction of a large 
number of atoms requires large computing power. Incorporation of 
reflection-diffraction duality may permit one to treat coherent wave 
scattering more economically even in the Laue limit. One strategy 
is to start with Laue’s three diffraction equations and without the 
use of the reciprocal lattice mathematically derive the geometrically 
correct solution. Such a solution will be (i) based on a solid theoretical 
foundation, (ii) applicable to systems with both short and long 
range orders, plus (iii) provide benchmarks for comparisons with 
experimental data. Additionally a fresh understanding is likely to 
benefit current and future trends toward high intensity radiation, short 
exposure, decreased order and specimen size plus emphasis on real 
space visualization.
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