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Highly Active Antiretroviral Therapy, HIV Infection 
and Amyloid-Beta (Aβ) 

HIV-associated neuroinflammation is known to occur in even in 
the face of good virologic control with HAART [1]. As part of this 
neuroinflammation, the HIV itself promotes deposition of the same 
amyloid-β peptide (Aβ) found in Alzheimer’s disease (AD; for review 
see [2]). In HIV infected patients, Aβ immunoreactivity has largely 
been observed predominantly in the neuronal soma, dystrophic axons, 
and extracellular space [3-5]. Importantly, this Aβ deposition has 
been correlated with development of neurocognitive impairment [1]. 
In further support, Xu and colleagues [6] found, upon examination 
of autopsy brains of HIV Encephalitis (HIVE) and HIV seronegative 
cases, similar findings. Although intraneuronal Aβ immunoreactivity 
is also seen in aged control brains, it was significantly increased in 
HAART-treated HIVE brains. Extracellular Aβ deposition was also 
found in HAART-treated brains from patients with HIV-associated 
dementia (HAD) but HAART-untreated HAD brains show only 
intraneuronal Aβ accumulation [6]; indicating some mechanistic role 
of HAART in Aβ deposition. The prevalence of this intraneuronal 
Aβ staining was about 30-40%, and extracellular Aβ was present in 
4-13% of HIV-infected brains, with a significantly higher percentage of
extracelluar Aβ present in HAART-treated patients [5]. Importantly,
Brew and colleagues found cerebrospinal fluid (CSF) Aβ 1-42 and tau
levels correlate with HIV-associated cognitive impairment (HAND)
[1].

It is possible that extracellular Aβ (eAβ) and intracellular 
amyloid-beta (iAβ) are present and interact in a cyclic pathway [7,8]. 
Neuronal loss is a late event in neurodegeneration. Many changes, 
including synapse dysfunction, electrophysiological properties and 
morphological atrophy, occur prior to neuronal loss [9]. Although 
iAb and its accumulation may be an early event prior to senile plaque 
and neurofibrillary tangles (NFT), iAb may alter cellular functions that 
would subsequently lead to neuronal loss [7].

iAβ is widely detected in neuronal cells and mainly produced by 
neurons, but glial cells also produce it in the normal human brain [10]. 
The iAβ accumulation precedes eAβ deposits and plaque formation. 

In animal models, iAβ accumulation precedes morphological deficits 
[11,12]. Aβ is generated by the sequential enzymatic cleavage of 
amyloid precursor protein (APP), and processing may occur within the 
endoplasmic reticulum (ER) intermediate compartment [13]. 

There are several hypothetical pathways that may result in iAb 
accumulation [7]. First, iAβ may be formed in the ER, recognized as 
a misfolded protein, and then translocated to the cytosol where it is 
ubiquitinated and sent to the proteasomes for degradation [14]. Since 
this degradation process decreases with aging, or medication toxicities, 
inefficient clearance of Aβ could result in iAβ accumulation. Secondly, 
secreted Aβ may be internalized into endosomes [15,16], increasing 
the membrane permeability of lysosomes [17], and thus, promote 
leaks into the cytosol. Thirdly, iAβ may occur due to passive leakage 
along any component of the secretory pathway. Fourth, eAβ passively 
diffuses through the plasma membrane into the cytosol or is actively 
brought in by surface receptors [18]. Finally, oxidative DNA damage 
induces iAβ accumulation resulting p53 mRNA increase in the nuclei 
leading to Bax and caspase-6 activation and subsequent execution of 
the cell apoptotic pathway [19]. 

Importantly, cellular toxicity of iAβ may be cell-type specific, 
because it induces cell death only in human primary neurons, but not 
in human primary astrocytes, murine neuroblastoma cells (NT2a), 
LaN1 or M17 cells [19]. It also appears that the Aβ oligomers, but not 
fibrils, may be the more toxic species [19], and that the iAβ toxicity may 
be attributed to these Aβ oligomeric forms.
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Abstract
Highly Active Antiretroviral Therapy (HAART) has significantly reduced AIDS-related morbidity and mortality. 

However the prevalence of HIV-1-Associated Neurocognitive Disorders (HAND) has been on the rise in the post-
HAART era. A majority of the side effects of HAART can in part at least be attributed directly, or indirectly, to 
mitochondrial dysfunction. Indeed the rapid early clinical phase-in of HAART required dose de-escalations secondary 
to toxicities suggested to be related to drug side effects affecting mitochondria. Central to central nervous system 
(CNS) function is the amyloid precursor protein (APP), the parent protein from which amyloid-beta (Aβ) peptide is 
generated. Aβ generation and aggregation as plaques are well known in the age related dementia, Alzheimer’s 
disease (AD). It has been demonstrated that Aβ is common feature of the HIV infected brain as well. Further, reactive 
oxygen species (ROS) production is upregulated by HAART. Importantly, ROS promote β-secretase expression; 
a mechanism by which HAART may promote cognitive dysfunction, even in immune-competent HIV infected 
individuals. 
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Thus it is not surprising that accumulation of iAβ is correlated with 
apoptotic cell death. Alterations in axonal structure and transport may 
account for the iAβ neurotoxicity and its role in memory function. 
Accumulation of iAβ increases the number of Golgi apparatus 
elements, lysosomes and lipofuscin bodies in the hippocampus [20], 
and also leads to axonopathy with the formation of axonal spheroids as 
well as myelin ovoids.

There are at least two forms of eAb, high molecular weight 
insoluble Aβ fibrils that accumulate in the extracellular space as senile 
plaques [21] and soluble forms of Aβ that correlate with synaptic 
dysfunction and cognitive decline [22,23] which include: (a) soluble 
small globular structures of synthetic Aβ termed Aβ-derived diffusible 
ligands (ADDLs) [24,25], (b) curvilinear structures of protofibrils [26], 
and (c) Aβ oligomers; especially nanomers and dodecamers [27]. 

While Aβ oligomers and ADDL do not seem to progress into 
insoluble fibrils and plaques, they can interact with cell surface 
receptors or the cell membrane to gain access into the cells, hence 
contributing to iAβ load. Likewise, the Aβ fibrils, present as insoluble 
deposits, could reverse into soluble Aβ monomers. The solubilized Aβ 
may subsequently gain access into the cells via receptor or membrane 
mediated mechanisms as described if not degraded by the appropriate 
proteases such as insulin degrading enzyme (IDE) and neprilysin [28]. 

The positron emission tomography (PET) tracer  11C-labeled 
Pittsburgh Compound-B (11C-PIB) specifically binds fibrillar Aβ 
plaques and can be detected [29].  In a recent case-control study, 
cognitively unimpaired, HIV infected patients had an 11C-PiB scan 
within 2 years of concomitant CSF studies and neuropsychometric 
testing. As would be expected, none of the  HIV+ participants had 
fibrillar  amyloid  plaques as assessed by increased 11C-PiB Mean 
Cortical Binding Potential (MCBP) or binding potential within four 
cortical regions [30]; lending further support to the findings of Brew 
and colleagues [1]. In the following review we suggest it is possible 
Aβ biogenesis is increased by the upregulation of β-secretase (BACE) 
through mitochondrial reactive oxygen species (ROS) activity imparted 
by HAART.

Disruption of Mitochondrial Function by HAART
Highly active antiretroviral therapy  (HAART) has significantly 

reduced AIDS-related morbidity and mortality. However the prevalence 
of HIV-1-associated neurocognitive disorders (HAND) has been on 
the rise in the post-HAART  era [31-33]. HAART, and particularly 
the nucleoside reverse transcriptase inhibitors (NRTI) (especially 
didanosine, stavudine, zalcitabine, and to a lesser extent zidovudine 
(AZT), abacavir and lamivudine [3TC]), has been positively correlated 
with serious adverse reactions.

Most of these can in part at least be attributed directly or indirectly 
to mitochondrial dysfunction [34-37]. Mitochondria are key organelles 
in energy production in all nucleated human cells. This energy, in 
the form of ATP, is produced through the oxidative phosphorylation 
pathway. Furthermore, mitochondria perform an array of other 
biological functions and modulate factors involved in cell apoptosis 
[38].

NRTIs have traditionally been suggested to be major culprit 
in  HAART-induce mitochondrial toxicity due to their ability to 
inhibit Pol-γ, the DNA polymerase responsible for the synthesis of 

mitochondrial DNA [34,39,40]. Nevertheless, accumulating evidence 
points to a more complex relationship between these organelles and 
NRTIs, as well as non-nuceloside reverse transcriptase inhibitors 
(NNRTIs) such as efavirenz (EFV) and Protease Inhibitors (PI). The 
rapid early clinical phase-in of HAART required dose de-escalations 
secondary to toxicities suggested to be related to drug side effects on 
mitochondria [38]. For example, it has been shown the HAART drug 
combination of zidovudine (AZT) and the PI, indinavir (IDV) can 
disrupt the function and viability of endothelial cells due to loss of 
mitochondrial membrane potential; partially reversible with the thiol 
antioxidant N-acetylcysteine amide [32]. In adipocytes from HAART 
treated patients, it has also been shown that NRTI administration 
correlated positively with mitochondrial DNA depletion [41,42] 
suggesting an etiology for the lipodystrophy imparted by HAART. 
There are also coherent experimental and clinical arguments for the 
existence of mitochondrial toxicity following perinatal exposure to 
AZT, alone or in combination with the NRTI 3TC [43,44]. Further it has 
been demonstrated that placental tissue of HIV-1-infected HAART-
exposed pregnancies undergoes mitochondrial DNA depletion with 
secondary respiratory chain compromise [45] and also that HAART 
treated pregnant mothers can have children with mitochondrial 
dysfunction [46]. It has also been found in synaptosomes and isolated 
mitochondria, as well as human subjects [47,48] that the NRTI, 
didanosine, can induce oxidative stress, cause the release of cytochrome 
c, reduce the levels of anti-apoptotic proteins, and increase the levels of 
pro-apoptotic proteins [49]. 

Elevation of ROS, APP Processing and Aβ Biogenesis
Central to CNS neural function is the amyloid precursor protein 

(APP), the parent protein from which amyloid-beta (Aβ) peptide is 
generated. Aβ generation and aggregation as plaques are the hallmark 
pathology of Alzheimer’s Disease (AD; [15,50-53]). The peptides 
have been evidenced to be neurotoxic, as they are reported mediators 
of inflammation [54,55], and oxidative stress [56]. Aβ peptides are 
produced via the amyloidogenic pathway of APP proteolysis, which 
involves the actions of β and γ-secretases [15]. Initially, β-secretase 
(BACE) cleaves APP, creating an Aβ-containing carboxyl-terminal 
fragment known as β-C-terminal fragment (β-CTF) [57,58]. In the 
human brain Aβ40 is the predominant form whereas Aβ42 represents 
about 10% Aβ in the brain and has a greater propensity to form 
neurotoxic oligomeric and aggregated species (for review, see [59]). 
NFT, like amyloid, have also been implicated as a central pathological 
feature of AD. They are misfolded and hyperphosphorylated tau, 
a microtubule formation protein element (for review see [60]). 
The accumulation of Aβ can adversely affect disrcrete molecular 
pathways, thus facilitating tau phosphorylation, aggregation, and 
accumulation of abnormal hyperphosphorylated tau. Aβ and abnormal 
hyperphosphorylated tau synergize to accelerate neurodegenerative 
mechanisms involved in aging, metabolism, cellular detoxification, and 
mitochondrial dysfunction, resulting in neuritic plaque formation [61]. 
Levels of BACE - 1 are increased in vulnerable regions of the AD brain, 
but the underlying mechanisms are not known.

Importantly, it has been demonstrated that ROS stimulate 
β-secretase expression [62], suggesting a mechanism by which HAART-
induced ROS promotes β-secretase transcription, thereby promoting 
production of pathological levels of Aβ linked cognitive dysfunction 
in AD which could be applied to HAND. Indeed deposition of Aβ is 
common feature of HIV infection [5,63,64]. Mitochondrial dysfunction 
has been observed in postmortem brains of AD patients [65] just as 
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in HAART-treated HIV-infected patients [66]. Indeed, mitochondrial 
dysfunction in both AD [67-69] and HAART-treated patients [66,70-
74] is characterized by elevated ROS generation [75], decreased 
electron transport chain activity, most markedly in cytochrome c 
oxidase, and altered Krebs cycle enzyme activities [32,45,76,77]. It has 
been suggested that mitochondria play a pivotal role in the irreversible 
loss of neuronal function and in the neuronal cell death that occurs 
during the pathogenesis of both conditions [49,78]. 

Several studies have indicated mitochondria may be a direct 
target of AD–associated proteins and peptides such as full-length 
APP, Aβ peptide, tau, and truncated ApoE4 [79-83] just as HAART 
directly targets mitochondria. APP and Aβ have both been localized to 
mitochondria, where they may cause a disruption of basic mitochondrial 
functions including oxidative phosphorylation or protein import [82]; 
similar to HAART. Complex IV (of the electron transport chain) seem 
to be a direct target of both Aβ and truncated ApoE4 [80,84] well as 
NRTI.

Aging, Chronic HAART Administration and 
Development of Cognitive Deficits

Despite this dramatic improvement in AIDS related morbidity 
and mortality, high rates of HAND continue to be reported [6,85-88]. 
Indeed HAND, chronic HIV infection, and aging may all possibly 
contribute to the development of new forms of neurodegenerative 
processes based on mitochondrial dysfunction, ensuing upregulation 
of BACE1, which in turns promotes amyloidogenic APP processing 
and formation Aβ plaques. All of this would be reflected in accelerated 
aging-like neurocognitive deficits. The life span increase imparted by 
HAART also brings patients to an age in which AD is more common 
and the development of adverse effects of long term medication with 
HAART may present [89,90].

In support, we recently found that antiretroviral compounds 
might increase Aβ generation and decrease its clearance by inhibiting 
microglial phagocytosis, affecting both, amyloidogenic fronts, 
generation and clearance [90]. Specifically, we found high levels of Aβ1-

42 peptide remaining in the cultured media after N9 microglial cells were 
treated with antiretrovirals alone or in combination upon completion of 
phagocytosis assay [90]. In addition, a majority of the compounds tested 
also significantly reduced levels of phagosomal (cell associated) Aβ1-42 
suggesting that HAART can cause microglial phagocytosis inhibition 
[90]. The most significant amyloidogenic effects were observed with 
combined HAART, suggesting certain HAART medications may have 
additive amyloidogenic effects when combined [90]. Recent clinical 
studies [87,91] further suggests that in well controlled HIV infection, 
HAART can have a negative effective on cognitive function. It was 
found, from 167 HIV patients with a median nadir CD4 count of 
436 cells/mm3 and 4.5 median years on HAART, that neurocognitive 
functioning actually improved after HAART discontinuation [91]. 
This improvement continued over the course of the 96-week follow-
up of the study among the patients remaining off HAART [91]. They 
observed continued improvement from 48 weeks out (third testing) 
from the study, indicating that the improvements were not attributed 
to practice or learning effects. Antiretrovirals that enter the CNS 
were widely represented in their HAART regimens. They also noted 
a lack of substantial neurocognitive improvement with resumption of 
HAART [91]. This study is interesting in that removal of the HAART 
from patients under good viremic control improved cognition. One 
would expect that resumption of HAART may again induce cognitive 

problems however this was not the case. Therefore follow-up studies 
will need to be performed to determine the underlying mechanism of 
this phenomenon. Most recently it was shown that efavirenz (EFV) 
is associated with cognitive disorders in even asymptomatic HIV-
infected patients [87]. Further, a randomized controlled study [92] 
found subjects receiving EFV-containing regimens for 48 weeks 
showed less improvement from baseline on instruments examining 
speed of information processing and executive function than patients 
not on EFV, suggesting EFV use may promote neurocognitive decline. 
This is also supported by findings of Robertson et al. 2010 [91], in 
which patients with preserved immune function on EFV regimens 
showed greater improvement on Trails-Making Tests A and B and 
WAIS digit symbol after antiretroviral treatment interruption than the 
non-EFV control group. Of note, the trail-making test measures visual 
attention and task switching. The instrument consists of two parts in 
which the subject is instructed to connect a set of 25 dots as rapidly 
as possible while still maintaining accuracy. It is able to provide data 
regarding visual search speed, scanning, speed of processing, mental 
flexibility, and executive functioning [93]. Additionally it is sensitive 
to detecting several cognitive impairments [93] and both tests in this 
study have been found to be sensitive and specific to detecting HAND 
[94,95]. The lack of observed further cognitive decline upon HAART 
reinitiation in these patients may be related to not following the cohort 
long enough for the chronic effects of HAART in the CNS to re-initiate. 
It might also be due to limited power. As it has been suggested that 
earlier initiation of HAART may improve clinical outcomes, the effect 
of HAART vs. that of unchecked HIV replication on cognitive function 
will require further prospective studies [91,96].

Finally, considerable neuroinflammation coupled with 
mononuclear phagocyte activation has been found in HAART 
medicated brains, particularly in the hippocampus. Anthony and 
colleagues [97] found a high level of microglial/macrophage activation 
that is comparable with the levels seen, pre-HAART, in HIVE and 
AIDS cases. This result was maximal in the hippocampus where 
microglial/macrophage upregulation in the HAART-treated group 
exceeded that seen in HIVE. In the basal ganglia, HAART-treated 
cases showed significantly higher levels of CD68-positive microglia/
macrophages than in control brains, and in the hippocampus levels 
were significantly higher than those seen in control cases, pre-HAART 
AIDS, and presymptomatic brains. Overall there is a significant 
degree of ongoing neuroinflammation in HAART-treated patients, 
particularly in the hippocampus. This may pose a threat for the future 
health of individuals maintained long-term on HAART therapy. [97]. 
Neuroinflamaton is also a feature of both aging and AD (for review see 
[98]). We and others have shown this resultant elevated secretion of 
pro-inflammatory cytokines including IFN-γ, TNF-α, and IL-1β can 
increase Aβ generation and reduce Aβ clearance [6,98,99,100]. 

In summary it is clear that at least certain HAART regimens, 
especially those containing EFV, have the potential to cause cognitive 
decline, despite good control of the HIV itself [87]. Further, it is known 
that CNS Aβ production is a common feature of the HAART treated 
brain [3,5] which correlates with cognitive deficits [1]. Therefore, as the 
aging and efficaciously treated HIV-infected population continues to 
grow, there will likely be a need to phase in less toxic HAART regimens 
[101] and/or develop adjunctive neuroprotective, or prophylactic 
treatments for these undesirable side-effects.

http://en.wikipedia.org/w/index.php?title=Visual_attention&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Visual_attention&action=edit&redlink=1
http://en.wikipedia.org/wiki/Task_switching_(psychology)
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