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Abstract
The fermentation of brown rice produces black vinegar that has been suggested with beneficial metabolic effects; 

however, the mechanisms of actions of fermented brown rice have not been studied. We found that fermented brown 
rice extracts, especially a fraction of fermented brown rice fibers (FBRF), exhibited hypolipidemic and hypoglycemic 
activities in vivo. The oral administration of FBRF to C57BL/6J mice reduced plasma cholesterol, triglycerides, low-
density-lipoprotein cholesterol levels, hepatic lipid accumulation and adipocyte size. The activation and induction of 
hepatic PPARα and subsequent regulation of its target gene expressions in fatty acid uptake and oxidation were the 
major mechanism for reducing plasma and hepatic triglyceride concentrations. In addition, FBRF improved glucose 
tolerance and insulin sensitivity. FBRF feeding reduced the expressions of hepatic ChREBP, a key transcription factor 
in gluconeogenesis, and pro-inflammatory cytokines, thus improved insulin resistance. These results demonstrated 
that FBR, especially FBRF, shows potent hypolipidemic and anti-diabetic activities through regulating the expression 
of genes associated with lipid, glucose metabolism and inflammatory cytokines.

Keywords: Fermented brown rice; Dietary fiber; Lipid metabolism; 
Glucose metabolism; Inflammation

Introduction
The mechanism of dyslipidemia causing cardiovascular disease (CVD) 

has been intensively investigated at the molecular level, providing evidence 
that an elevated level of low-density-lipoprotein (LDL) cholesterol is the 
major cause for CVD. Therefore, reducing LDL cholesterol has been a 
critical strategy in preventing CVD. In this regard, the efficacy study of 
a cholesterol-lowering treatment showed that an approximately 12% 
reduction in cholesterol leads to a reduction in the risk of CVD by 19% 
[1], and this level of reduction could be achieved through appropriate diet 
interventions. Several hypolipidemic drugs, including statins, are available; 
however, potent drugs usually have severe adverse effects. For example, 
statins could cause myopathy, peripheral neuropathy, and hepatotoxicity 
[2]. Therefore, a great deal of effort has focused on the investigation of 
the biological function of natural compounds that could be applied to the 
prevention of CVD by dyslipidemia. 

Dietary fiber is a major dietary factor in the prevention of CVD 
and metabolic syndrome [3]. Epidemiologic studies demonstrated that 
the intake of high fibers significantly reduces the risk of CVD. It has 
been reported that the intake of high fiber foods reduced the relative 
risk of CVD by 33% [4]. Studies also indicated that the consumption of 
dietary fiber resulted in various beneficial metabolic effects, including 
the improvement of insulin sensitivity, the regulatory secretion of 
gut hormones, such as cholecystokinin, and the reduction of pro-
inflammatory cytokines [5]. Furthermore, the intake of high-fiber 
foods is associated with reduced plasma LDL levels [6], lowered body 
weight [7], and improved glucose, lipid metabolism [8], and immune 
function [9,10].

Brown rice has nutritional benefits due to its high content of dietary 
fibers; therefore, the intake of whole grains is recommended. However, 
high-fiber foods such as soy are often consumed in their fermented form, 
and the fermented products are known to have biological effects [11]. 
The bacterial fermentation of indigestible dietary fiber produces several 

organic acids and novel modified fibers. Studies have shown that the 
long-term consumption of fermented insoluble dietary fibers prevents 
a high-fat diet-induced obesity phenotype in mice [12]. In addition, 
viscous and fermentable dietary fibers have had hypocholesterolemic 
effects in hamster experiments [13]. Furthermore, it has been reported 
that fermented compounds in rice were digested more slowly and 
improved lipid metabolism. 

The fermented brown rice (FBR) is used to produce black vinegar 
that has health-promoting activities, including preventive effects on 
esophageal tumorigenesis and colon carcinogenesis [14,15]. It has 
been previously suggested that FBR could eliminate toxic chemicals, 
such as polychlorinated-biphenlys and dioxin-like polychlorinated 
biphenyls, in humans [16]. However, the biological mechanisms and 
metabolic effects of FBR have not been properly investigated. This study 
investigates the role of FBR and its fiber (FBRF) and small peptide 
fraction (FBRP) in regulating lipid and glucose metabolism, and 
suggests their potential application in the food industry.

Materials and Methods
Preparation and composition analysis of FBR, FRBF, and 
FBRP

Brown rice (Oryzae sativa L.) from cultivars Ilpum (Korean 
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harvest, 2012) was obtained from NH Agricultural Association 
Cooperation (Seoul, Korea). Composition of brown rice are shown in 
Suppelmental Table 1. For fermentation, brown rice was soaked for 5 h 
in distilled water and gelatinized for 20 min at 60°C until the moisture 
content of the gelatinized brown rice reached 30%. Then, filtered water 
(1.5× volume) was added and mixed completely. After gelatinization, 
Aspergillus oryzae and Rhizophus delemer (0.5% w/v, each) were added, 
and the mixture was fermented for 18 h at 60°C for saccharification and 
liquefaction with agitation. 

Then, the fermented brown rice was sterilized for 1 h at 90°C. This 
sample was classified as FBR in the study. The FBR was centrifuged at 8000 
rpm for 30 min to obtain the supernatant. The crude polysaccharides 
were precipitated by the addition of four volumes of 95% cold ethanol 
to the supernatant samples. The precipitate was then dissolved in water 
and dialyzed using a Spectra/Por2 instrument (molecular weight cut off: 
12,000-14,000; Spectrum Laboratories Inc., Rancho Dominguez, CA, 
USA). The high-molecular-weight solution (>1 Kd) was lyophilized to 
yield the crude polysaccharide fraction (FBRF) from FBR. To remove 
the starch-based polysaccharides, FBRF (10 g) was suspended in 

50 mM ammonium formate buffer (pH 4.9) and hydrolyzed with 10 
units of β-Amylase (Sigma Co. St. Louis, MO, USA) and 100 units of 
glucoamylase (Sigma) for 24 h at 40°C. The residual enzyme activities 
were then inactivated by boiling at 100°C for 30 min. The enzyme-
treated FBRF was centrifuged to recover the supernatants. The FBRP 
fraction with molecular weight <1 Kd was finally prepared using 80% 
ethanol precipitation and lyophilized after desalting by dialysis (1.06 g). 
The total neutral sugar content was determined by means of the phenol-
sulfuric acid reaction with galactose as the standard [17]. The uronic 
acid content was determined by measuring the absorbance at 525 nm 
using the m-hydroxybiphenyl colorimetric procedure with galacturonic 
acid as the standard [18]. The protein contents were analyzed using 
Bradford assays [19] with BSA as the standard. The content of Kdo 
(2-keto-3-deoxy-d- manno-2-octulosonic acid) was determined 
colorimetrically by the modified thiobarbituric acid method [20]. The 
sugar composition of the polysaccharide samples was determined by 
the gas chromatography (GC) analysis of their alditol acetates [21]. 
The samples were hydrolyzed with 2 M trifluoroacetic acid for 1.5 h 
at 121°C and converted into the corresponding alditol acetates. The 
resulting carboxyl-reduced alditol acetates were analyzed through GC 
(GC ACME-6100, Young-Lin Co., Anyang, Korea) using an SP-2380 
capillary column (0.2-μm film thickness, 0.25-mm i.d. × 30 m; Supelco, 
Bellefonte, PA, USA) at 60°C for 1 min, 60→220°C (30°C/min), 220°C 
for 12 min, 220→250°C (8°C/min), and 250°C for 15 min. The molar 
percentage was calculated from the peak areas and response factors 
using the flame-ionization detector (FID).

Cell culture

HepG2 cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM, Hyclone, USA; Cat # SH30243.01) with 10% fetal 
bovine serum (Hyclone, USA; Cat # SH30919.03) and 1% penicillin/
streptomycin (Hyclone, USA; Cat # SV30010). 

Cell viability test

The viability test was performed according to a previously 
described method [22]. HepG2 cells were seeded in 24-well plates 
for 24 h. The cells were then incubated with test materials at varying 
concentrations. After 24 h incubation, the culture medium was 
removed, and 1 mL of DMEM with 10% of 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) solution was added. The 
mixture was incubated for 3 h. The MTT solution was removed, and the 
cells were dried for 1 min. Then, 1 mL of dimethyl sulfoxide was added 
to the cells, and the mixture was incubated for 2 h with mild shaking. 
The absorbance was measured at 570 nm in a Model 680 microplate 
reader (Bio-Rad, Hercules, CA, USA; Cat # 168-1000XTU). 

Mouse feeding study

All of the animal experiments complied with the approved 
protocol by the Institutional Animal Care and Use Committees of 
Korea University (Protocol No KUIACUC-2013-139). The breeding 
environment of the mice was aseptic, and the lights were turned on and 
off at 12-h cycles. Eight-week-old male C57BL/6J mice were housed 
under standard conditions with free access to water and fed a high-
fat-diet during the experiments (40% calories from fat, Supplementary 
Table 2). The test materials were orally administered for 4 weeks in 
combination with a high-fat diet. There were four groups in the feeding 
experiment: vehicle-fed control, FBRF, FBRP, and FBR groups. Each 
group was fed 500 mg/kg body weight of FBR, FBRF, or FBRP in 200 
μL of distilled water or 200 μL of distilled water as a vehicle for 4 weeks. 

Soluble Polysaccharides 0.4%
Glucose 95.8
Galactose 1.2
Mannose 1.2
Arabinose 1.0
Xylose 0.8
Amino acid 1.2%
glutamic acid 19.2
aspartate 12.5
arginine 10.0
leucine 7.5
serine 6.7
proline 6.7
alanine 6.7
glycine 5.8
phenylalanine 5.0
tyrosine 4.2
threonine 3.3
valine 3.3
lysine 3.3
methionine 2.5
isoleucine 2.5
histidine 2.5
cysteine 1.7
Mineral 0.8%
folate 82.1
potassium 8.7
phosphorus 6.8
sodium 1.8
calcium 0.3
vitamin E 0.1
niacin 0.1
zinc 0.0
manganese 0.0
iron 0.0
vitamin B1 0.0
vitamin B6 0.0

Table 1: Compositions of soluble polysaccharides, amino acids, and minerals in 
FBRs.
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Results
Composition of FBRs

The composition of FBRs was analyzed by GC. The FBRF contained 
0.4% soluble polysaccharides, 1.2% amino acids, and 0.8% minerals. 
Glucose (95.8%) occupied most of the soluble polysaccharides, followed 
by galactose (1.2%) and mannose (1.2%). Of the amino acids, glutamic 
acid (19.2%) had the largest proportion, followed by aspartate, arginine 
(12.5%), and leucine (10.0%). Finally, folate (82.1%) was identified as 
the most abundant mineral in FBRs, followed by potassium (8.7%) and 
phosphorus (6.8%) (Table 1).

FBR administration revealed hypolipidemic effects in mice

In HepG2 cells, FBRs (FBRF, FBRP, and FBR) did not affect cell 
viability, as assessed with the MTT assay, at concentrations up to 500 
µg/mL (Supplemental Figure 1). To investigate the metabolic effects of 
FBRs (FBRF, FBRP, and FBR) in vivo, the FBRs were orally administered 
to mice for 4 weeks. The body weights of the mice in all groups increased 
over the 4-week feeding period; however, the weight gained in the FBRF 
group was significantly lower than that observed in the other groups 
after 3 weeks of feeding (Figure 1A, Supplemental Figure 2). The liver 
masses were similar among all of the groups; however, the adipose 
weights of the FBRF and FBR groups were significantly lower than that 
of the control group, especially that of the perirenal, abdominal, and 
total fat (Figure 1B, Supplemental Figure 3). The average adipocyte sizes 
of all three FBR groups were significantly smaller (56.3%, 55.3% and 
56.7%, respectively) than that of the control group (Figure 1C and 1D), 
suggesting that the intake of FBRs reduces fat accumulation in vivo. 

After 4 weeks of feeding, the plasma cholesterol concentrations of 
the FBRF, FBRP, and FBR groups were significantly decreased by 30.3%, 
24.7%, and 16.5%, respectively, compared to those of the control group. 
The triglyceride concentrations of the FBRF and FBR groups were 
significantly decreased by 44.1% and 38%, respectively, compared to 
that of the control group, and the LDL-cholesterol concentrations and 
atherogenic index of the FBRF and FBRP groups were also significantly 
decreased by 39.3% and 33.6%, respectively, compared to those of the 
control group. The HDL-cholesterol levels were similar among the 
groups (Figure 2A). 

The hepatic triglycerides of the FBRF, FBRP and FBR groups 
were significantly decreased by 43.5%, 34.8%, and 33.7%, respectively, 
compared to that of the control group, and the hepatic cholesterol 
in the liver of the FBRF group was significantly decreased by 36.2% 
compared to that of the control group (Figure 2B). These results were 
confirmed by the histological analysis of the liver with H&E staining, 
which showed that the hepatic lipid accumulations in the FBRF, FBRP, 
and FBR groups were markedly reduced (Figure 2C). These results 
demonstrate that FBRs can regulate body weight and ameliorate the 
hypercholesterolemic conditions by improving the hepatic and/or 
plasma lipid profiles, which suggests that they have hypolipidemic 
effects.

Feeding with FBRs regulates the hepatic gene expression 
related to lipid metabolism

The hypolipidemic mechanisms of FBRs were investigated through 
an analysis of the hepatic expression levels of genes involved in lipid 
metabolism. First, we assessed the rate of fatty acid synthesis and fatty acid 
oxidation in lipid-loaded HepG2 cells. The rates of fatty acid oxidation 
were significantly increased in the FBRP and FBR groups, whereas the 

The food intake and body weight of the mice were monitored once a 
week for 4 weeks. 

Blood analysis

The mice were anesthetized with avertin (2,2,2-tribromoethanol, 
20 mg/mL, Sigma), and the blood was collected retro-orbitally after 12 
h overnight fasting at base line and by heart puncture at the end of 
the feeding experiments. The blood was centrifuged at 3000 rpm for 15 
min, and the plasma was collected to measure the glucose, triglyceride, 
total cholesterol, low-density-lipoprotein (LDL), and high-density-
lipoprotein (HDL) concentrations using an automated blood analyzer 
(cobas C111, Roche, Basel, Switzerland) through an enzymatic method. 
The plasma samples were stored at –80℃ until analysis. The leptin 
(Millipore, Bedford, MA,  USA; Cat. #EZML-82K) and adiponectin 
(Abcam, Cambridge, UK; Cat. #ab108785) concentrations were 
quantified with commercially available ELISA kits. 

Oral glucose tolerance test (OGTT) and insulin tolerance test 
(ITT)

After 2 weeks of oral administration, the OGTT was conducted 
by the oral administration of 200 μL of glucose (1.5 g/kg bodyweight) 
after 12 h of fasting, and the ITT was conducted by the intraperitoneal 
injection of 100 μL of insulin (0.75 unit/kg body weight) after 6 h of 
fasting. The blood glucose levels were quantified with an Auto-check 
glucometer (Diatech Korea, Seoul, Korea) at different time points. 

Histological analysis

The liver and abdominal adipose tissues from the mice were 
obtained immediately fixed in 4% paraformaldehyde to make paraffin-
embedded blocks. The tissue sections were prepared using a microtome 
and stained with hematoxylin and eosin (H&E) according to a 
previously described method [23]. The images were acquired with an 
inverted microscope (Axio Observer D1, Carl-Zeiss AG, Oberkochen, 
Germany). The adipocyte size was also measured by the AxioVision 
software (Carl-Zeiss AG, Oberkochen, Germany).

Quantitative PCR (qPCR)

The total RNA from the liver were extracted, and cDNA were 
synthesized from 2 μg of total RNA using M-MLV Reverse Transcriptase 
(Mbiotech, Seoul, Korea) and oligo(dT) primers. The expression levels 
of each gene were quantified using AccuPower® 2X Greenstar qPCR 
Master mix (Bioneer, San Francisco, CA, USA; Cat # K-6252) and IQ5 
Real-Time PCR Detection Systems (Bio-Rad, Berkeley, CA, USA; Cat 
# 170-9780) as described previously [24]. The level of gene expression 
was normalized to GAPDH and calculated automatically using iQ5 
Optical System Software version 2 (Bio-Rad, Hercules, CA, USA).

Rate of fatty acid oxidation and synthesis

HepG2 cells were seeded in 12-well plates. After 24 h, the medium 
was removed, and the cells were washed with PBS, then lipid-loaded 
with palmitic acid, oleic acid (40 μmol/L) and 0.16% fatty acid-free BSA 
(w/v) for 24 h. Lipid-loaded cells were treated with FBRF, FBRP and 
FBR for 24 h. For the fatty acid oxidation experiments, [1-14C] palmitate 
was added. After 1 h of incubation, the supernatant of each well was 
collected, and the CO2 was extracted by mixing with NaOH (Daejung, 
Siheung, Korea; Cat # 7574-4400) and HCL (Junsei, Tokyo, Korea; Cat # 
7647-01-0). The amount of 14CO2 was measured by a liquid scintillation 
counter. For the fatty acid synthesis experiments, [1-14C] acetic acid was 
added. One hour later, the fatty acids were extracted and measured as 
described previously [25].

http://en.wikipedia.org/wiki/USA
http://en.wikipedia.org/wiki/Oberkochen
http://en.wikipedia.org/wiki/Oberkochen
http://en.wikipedia.org/wiki/Berkeley,_California
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Figure 1: Body weight, organ weight and adipocyte size in mice fed FBRs. (A) Body weight during the feeding period. (B) Liver and adipose weights. (C) Average 
adipocyte sizes. The size was calculated from the measurement of 30 randomly selected adipose tissues. (D) Representative images of adipocytes in mice fed FBRs. 
All of the data were analyzed using one-way ANOVA for repeated measures with Tukey’s Studentized range test between the groups. A common letter indicates a 
significant difference (P<0.05). 
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rates of fatty acid synthesis were similar in all of the groups (Figure 3A). 
Second, we analyzed the expression of multiple hepatic genes in the 
PPAR-α pathway, which is a major mechanism for inducing fatty acid 
oxidation. The expressions of PPAR-α, the key transcription factor in 
hepatic lipid homeostasis, were significantly increased in the FBRF and 
FBR groups compared to the control (Figure 3B). Third, the expression 
of PPAR-α was upregulated, then the expression of PPAR-α target genes 
were quantified. In fatty acid oxidation, the expression levels of fatty-
acid-binding protein 1 (FABP1) and carnitine palmitolytransferase-1a 
(CPT1a) were significantly increased in the FBRF group compared to 
the control. The expression of lipoprotein lipase (LPL) and fatty acid 
transporter protein 5 (FATP5) was also significantly increased in the 
FBRF group compared to control (Figure 3D). Although the rates 
of fatty acid synthesis were similar in all of the groups in the in vitro 
experiment, the expression levels of acetyl-CoA carboxylase-1 (ACC1) 
and fatty acid synthase (FAS) were significantly decreased in the FBRF, 
FBRP, and FBR groups compared to the control. Furthermore, the 
expression of insulin-induced gene 2a (Insig-2a), which delays the 
posttranslational processing of the sterol regulatory element binding 
protein (SREBP), was significantly increased only in the FBRF group. 
Finally, the expression of SREBP1c was significantly reduced in the 
FBRF and FBR groups (Figure 3C). Regarding cholesterol metabolism, 

the expression levels of LDL-receptor (LDLR) and CYP7A1 were 
increased in the FBRF groups (Figure 3E). These results suggest that 
the feeding of FBRs regulates PPARα and its target genes in fatty acid 
metabolism and reduces the plasma triglyceride concentrations. The 
administration of FBRs also reduces the LDL cholesterol concentrations 
via induction of LDLR and CYP7A1 expression. 

FBRs feeding improved insulin sensitivity

Adipose tissue is one of the major tissues for plasma glucose 
homeostasis [26], and adiposity is associated with insulin resistance 
in metabolic syndrome [27]. The OGTT results showed that the blood 
glucose concentrations were significantly lower at 15, 30 and 60 min 
in the FBRF group compared to other groups. The area under the 
curve (AUC) of the OGTT results for the FBRF group was significantly 
lower than that of the control group by 27.9% (Figure 4A). The ITT 
results showed that the blood glucose levels of the FBRF group were 
lower compared to the levels found in the other groups at 15, 30, and 
90 min. In addition, the AUC of the ITT results for the FBRF group 
was significantly lower than that found in the control group by 15.4% 
(Figure 4B). These suggest that the glucose and insulin tolerances were 
improved in the FBR groups, particularly in the FBRF group, compared 
to the control group.

Figure 2: Plasma and hepatic lipid concentrations. (A) Plasma lipid analysis. (B) Hepatic lipid analysis. (C) Hepatic lipid accumulation assessed through hematoxylin 
and eosin staining. All of the data were analyzed through one-way ANOVA for repeated measures with Tukey’s Studentized range test between the groups. A common 
letter indicates a significant difference (P<0.05).
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The plasma concentrations of adipokine represent the status of 
metabolic syndrome. Especially, the plasma leptin and adiponectin 
concentrations are correlated with insulin resistance [28,29]. The plasma 
leptin levels of the FBRF, FBRP, and FBR groups were significantly 
reduced compared to the control group by 91.3%, 65.0%, and 71.7%, 
respectively (Figure 4C), and the plasma adiponectin concentrations of 
the FBRF group were significantly increased compared to the control 
by 70.1%. The levels of adiponectin in the FBRP and FBR groups 
tended to increase compared to that in the control group (Figure 4D). 
These demonstrated that intake of FBRs improved glucose and insulin 
tolerance through regulating plasma adipokines, leptin and adiponectin 
concentrations.

FBRs regulate the hepatic expression of genes associated with 
glucose metabolism

Pro-inflammatory cytokines secreted from hepatocytes and 

adipocytes are correlated with insulin resistance [30]. The expression 
levels of tumor necrosis factor α (TNF-α) in the FBRF, FBRP, and 
FBR groups were significantly reduced by 89.7%, 67.4%, and 88.0%, 
respectively. The expression levels of interleukin 6 (Il-6) were also 
decreased significantly in the FBRF, FBRP, and FBR by 79.4%, 74.3%, and 
77.8%, respectively, compared to the control group (Figure 5B). These 
results demonstrated that the feeding of FBRs reduced the expression 
of pro-inflammatory cytokines and therefore may ameliorate insulin 
resistance.

Decreased hepatic gluconeogenesis improves glucose control and 
insulin sensitivity. Notably, the expression levels of carbohydrate-
responsive element binding proteins (ChREBP), a key transcription 
factor of gluconeogenic genes in glycolysis, were significantly decreased 
in the fermented brown rice groups (FBRF, FRBP, and FBR) by 48.9%, 
53.5%, and 53.5%, respectively, compared to the control group. In 

Figure 3: The rate of fatty acid metabolism and the expression of lipid metabolism genes. (A) The rate of fatty acid synthesis and fatty acid oxidation. (B) PPAR-α gene 
expression. (C) Expression of genes in fatty acid synthesis. (D) Expression of genes in fatty acid oxidation. (E) Expression of genes in cholesterol metabolism. The 
mRNA was isolated from the livers of each group, and the expression levels of the genes were quantified by qPCR as described in the methods. All of the data were 
analyzed using one-way ANOVA for repeated measures with Tukey’s Studentized range test between the groups. A common letter indicates a significant difference 
(P<0.05). 
LDLR, low-density lipoprotein receptor; CYP7a1, cholesterol 7 alpha-hydroxylase; ACC1, acetyl-CoA carboxylase 1; FAS, fatty acid synthase; SREBP1c, sterol regulatory 
element-binding protein; LPL, lipoprotein lipase; FATP5, fatty acid transport protein 5; FABP1, fatty acid-binding protein; CPT1a, carnitine palmitoyltransferase; PPAR-α, 
peroxisome proliferator-activated receptor α; FA, fatty acid. 
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addition, the expression levels of phosphoenolpyruvate carboxykinase 
(PEPCK) and glucose 6-phosphatase (G6Pase), which are essential 
enzymes in gluconeogenesis, were significantly decreased in the FBRF, 
FBRP, and FBR groups (Figure 5A). These results indicated that the 
intake of FBRs improved glucose tolerance via downregulation of 

hepatic ChREBP expression and subsequent inhibited gluconeogenesis 
via reducing expression of PEPCK and G6Pase (Figure 6).

Discussion
Brown rice fermentation is used to produce traditional black 

Figure 4: Glucose and insulin tolerance test and plasma adipokines. (A) OGTT. (B) ITT. (C) Plasma leptin concentrations (D) Plasma adiponectin concentrations. All 
of the data were analyzed by one-way ANOVA for repeated measures with Tukey’s Studentized range test between the groups. A common letter indicates a significant 
difference (P<0.05).
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Figure 5: Expression of genes in glucose metabolism and insulin resistance. (A) Expression of genes in glucose metabolism. (B) Expression of pro-inflammatory 
genes. The mRNA levels were quantified by qPCR as described in the methods. All of the data were analyzed by one-way ANOVA for repeated measures with Tukey’s 
Studentized range test between the groups. A common letter indicates a significant difference (P<0.05). ChREBP, carbohydrate-responsive element-binding protein; 
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vinegar in Korea, which has been suggested to have health-promoting 
activities; however, its biological activities have not been investigated. 
Studies indicate that microbial fermentation produces novel bioactive 
metabolites. Modified fibers and small peptides could have novel 
biological beneficial activities [30]. In this study, we report the 
hypolipidemic and hypoglycemic activities of FBRs. The analysis 
of obese C57BL/6J mice fed a high-fat diet showed that the lipid 
accumulations in both adipose and liver tissues and the body weight 
were significantly reduced in the FBRF group compared with the 
controls. In addition, the feeding of FBRs significantly reduced the total 
cholesterol, LDL cholesterol and triglyceride concentrations compared 
to the control group, which demonstrated the anti-obesogenic and 
hypolipidemic activities of FBR, especially the fiber fraction. 

In gene expression studies, PPAR-α is the primary molecular 
target because it is highly expressed in the liver and functions as a key 
transcription factor that regulates the expression of genes involved 
in lipid and carbohydrate homeostasis [31]. The pharmacological 
activation of PPAR-α with synthetic ligands, such as fibrates, ameliorates 
symptoms in metabolic syndrome that reduces the triglyceride 
concentrations and controls glucose metabolism through the reduction 
of body weight [32]. The results from this study revealed that the 
expressions of PPAR-α and its target genes associated with fatty acid 
uptake and oxidation and lipoprotein metabolism were significantly 
regulated; therefore, the rates of fatty acid oxidation were induced in cells 
stimulated with FBR. The expression levels of PPAR-α in the liver were 
significantly increased by FBRF and FBR administration compared to 
the control. In addition, we also assessed the expression levels of genes 
involved in fatty acid oxidation including LPL, CD36, FATP5, FABP1, 
CPT1a, and ACOX1. LPL is a lipase that hydrolyzes triglycerides into 
free fatty acids and is involved in the cellular uptake of lipid materials, 
such as chylomicron remnants, cholesterol-rich lipoproteins, and free 
fatty acids. The feeding of FBRF and FBR increased the expressions of 
LPL significantly. FABP5 is a transporter related to fatty acid uptake, 
and FABP1 is a protein that facilitates the transfer of fatty acid via the 
transporter. FATP5 expressions were upregulated by FBRF and FBRP 
administration, whereas FABP1 was only upregulated by FBRF feeding. 
In the case of ACOX1 and CPT1a, which are the key enzymes in beta-
oxidation, only CPT1a was significantly upregulated by FBRF feeding. 
Additionally, the rates of fatty acid oxidation, measured in vitro, were 
also increased in all groups fed FBRs. These results suggested that 
feedings with FBRs facilitated fatty acid uptake and degradation by up 
regulating the expression of FABP1, FATP5, LPL, and Cpt1a, which 
subsequently resulted in reduced fat deposition and body weight in the 
FBR groups compared to the control group. 

Figure 6: A schematic representation of the mechanism underlying the 
hypolipidemic and hypoglycemic effects of FBRF. FBRF feeding lowers body 
weight and ameliorates hyperlipidemia and insulin resistance.
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Alternatively, a lipogenic transcription factor and PPAR-α target 
gene, SREBP1c, was downregulated in the FBR groups, and the SREBP1c-
responsive lipogenic genes ACC1 and FAS were downregulated 
accordingly. These results suggested that PPAR-α activation suppressed 
hepatic lipogenesis by inhibiting key gene transcription. Insig-2a 
is an ER protein that forms a complex with precursor SREBP1c and 
SCAP (a SREBP chaperone). The overexpression of Insig-2a holds the 
SREBP-1c-SCAP complex in the ER and delays the formation of active 
nuclear SREBP-1c [33]. The expression of Ins2a (a gene for Insig-2a) 
was induced in FBRF, and this could contribute to the reduction of 
additional hepatic lipogenesis in the FBRF group.

We assessed the expression levels of cholesterol metabolism genes, 
including HMGCR, LDLR, and CYP7A1, in the liver. The Hmgcr gene 
encodes the enzyme in the pathway that produces cholesterol. As a 
negative feedback mechanism, a high intracellular cholesterol level 
reduces both LDLR and HMGCR expressions while upregulating 
CYP7A1 to convert cholesterol to bile acids [34]. Our results suggested 
that the feeding of FBRs promoted the absorption and secretion of 
cholesterol by upregulating the expression of LDLR and CYP7A1, 
which explained the reduction in the cholesterol concentrations in the 
plasma and liver in the FBR groups. 

The effects of FBR on glucose metabolism were assessed through 
the expression of ChREBP, PEPCK, and G6Pase in the liver. ChREBP 
mediates the activation of not only enzymes of glycolysis but also 
enzymes associated with lipogenesis and fatty acid synthesis [35]. 
Downregulated ChREBP expressions were observed in the FBRF, 
FBRP, and FBR groups, which implied a decreased hepatic glucose 
output and lipogenesis. PEPCK and G6Pase, two key genes in hepatic 
gluconeogenesis and also PPAR-α target genes, were downregulated 
in the livers of the mice fed FBRs. Taken together, these results 
demonstrated that FRBs improved glucose control and insulin sensitivity 
by reducing the hepatic glucose output through the inhibition of key 
genes in gluconeogenesis.

Finally, FBRs reduced the expression of TNF-α and IL-6, pro-
inflammatory mediators that directly contribute to vascular injury, 
insulin resistance, and atherogenesis. IL-6 acts as a pro-inflammatory 
cytokine in hyperlipidemic status, and TNF-α contributes to the 
initiation and propagation of atherosclerotic lesion formation [36]. 
Taken together, the downregulation of these pro-inflammatory genes 
could improve lipid metabolism and glucose control and prevent the 
development of chronic disease, such as CVD.

In conclusion, this study demonstrated that the feeding of FBRs, 
especially FBRF, exhibited significant hypolipidemic effects by 
improving the plasma lipid profiles and reducing fat deposition and 
hypoglycemic effects by ameliorating glucose tolerance. In addition, 
these effects were regulated through the PPAR-α pathway. Thus, the 
appropriate intake of FBRs may ameliorate symptoms of metabolic 
syndrome. 
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