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Abstract
In molecular mechanics, current generation potential energy functions provide a reasonably good compromise 

between accuracy and effectiveness. This paper firstly reviewed several most commonly used classical potential energy 
functions and their optimization methods used for energy minimization. To minimize a potential energy function, about 
95% efforts are spent on the Lennard-Jones potential of van der Waals interactions; we also give a detailed review 
on some effective computational optimization methods in the Cambridge Cluster Database to solve the problem of 
Lennard- Jones clusters. From the reviews, we found the hybrid idea of optimization methods is effective, necessary and 
efficient for solving the potential energy minimization problem and the Lennard-Jones clusters problem. An application 
to prion protein structures is then done by the hybrid idea. We focus on the β2-α2 loop of prion protein structures, and 
we found (i) the species that has the clearly and highly ordered β2-α2 loop usually owns a 310 -helix in this loop, (ii) a 
“π-circle” Y128–F175–Y218–Y163–F175–Y169– R164–Y128(–Y162) is around the β2-α2 loop.
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Introduction
In molecular mechanics, current potential energy functions provide 

a reasonably good accuracy to structural data obtained from X-ray 
crystallography and nuclear magnetic resonance (NMR), and dynamic 
data obtained from spectroscopy and inelastic neutron scattering and 
thermodynamic data. Currently, AMBER, CHARMM, GROMOS and 
OPLS/AMBER are among the most commonly used classical potential 
energy functions [1-11] [35,38,42]. The energy, E, is a function of the 
atomic positions, R, of all the atoms in the system these are usually 
expressed in term of Cartesian coordinates. The value of the energy is 
calculated as a sum of bonded (or internal) terms Ebonded , which describe 
the bonds, angles and bond rotations in a macromolecule, and a sum of 
non- bonded (or external) long-range terms Enon−bonded [1,11,42]:

Epotential = Ebonded + Enon−bonded

	   = (Ebond−stretch + Eangle−bend + Erotate−along−bond

	        (+EUrey−Bradley + Eimproper + UC M AP))

	  +(Evan−der−Waals + Eelectrostatic + Ehydrogen−bonds).                                                                    (1)

For example, for AMBER and CHARMM force fields [11,42] 
respectively, the potential energy functions are [11]:
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where b, θ, φ, Rij , u, ω, ψ are basic variables (b is the bond length 
of two atoms, θ is the angle of three atoms, φ is the dihedral angle of 
four atoms, Rij is the distance between atoms i and j), and all other 
mathematical symbols are constant parameters specified in various 
force fields respectively. This paper will discuss how to effectively 
and efficiently use computational optimization methods to solve the 
minimization problem of the potential energy in Eq. (1) i.e. 

min Epotential .                                                                                           (4)

Firstly, for Eq. (4), we consider why we should perform energy 
minimization (EM). There are a number of reasons:

To remove nonphysical (or bad) contacts / interactions. For 
example, when a structure that has been solved via X-ray crystallography, 
in the X-ray crystallization process, the protein has to be crystallized so 
that the position of its constituent atoms may be distorted from their 
natural position and contacts with neighbors in the crystal can cause 
changes from the in vitro structure; consequently, bond lengths and 
angles may be distorted and steric clashes be- tween atoms may occur. 
Missing coordinates obtained from the internal coordinate facility may 
be far from optimal. Additionally, when two sets of coordinates are 
merged (e.g., when a protein is put inside a water box) it is possible that 
there are steric clashes / overlap presented in the resulting coordinate 
set www.charmmtutorial.org.

In molecular dynamics (MD) simulations, if a starting configuration 
is very far from equilibrium, the forces may be excessively large and the 
MD simulation may fail [1].

To remove all kinetic energy from the system and to reduce the 
thermal noise in the structures and potential energies [1].

Re-minimize is needed if the system is under different conditions. 
For example, in quantum mechanics / molecular mechanics (QM/MM) 
one part of the system is modeled in QM while the rest is modeled 
in MD, re-minimize the system with a new condition is needed www.
charmmtutorial.org.

http://www.charmmtutorial.org
http://www.charmmtutorial.org
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To perform EM is to make the system reaching to an equilibration 
state. EM of Eq. (4) can be challenging, as there are many local minima 
that optimization algorithms might get stuck in without finding the 
global minima in most cases, this is what will actually happen. Thus, 
how much and how far we should minimize should be well considered. 
Over-minimization can lead to unphysical “freezing” of the structure 
and move too much from its original conformation; if not minimized 
enough and exactly, for example, the normal mode calculation cannot 
arrive at the bottom of its harmonic well. However, in MD, because the 
output of minimization is to be used for dynamics, it is not necessary 
for the optimization to be fully converged but a few hundred or tens of 
local optimization search are good and kind enough. To make enough 
local optimization, usually, after we put the protein into a solvent (e.g., 
water), first we restrain the protein by holding the solute fixed with 
strong force and only optimize the solvent, next holding the solute 
heavy atoms only, and then holding the CA atoms only, and lastly 
remove all restraints and optimize the whole system.

Secondly, for Eq. (4), we consider what optimization algorithms we 
should use. In packages of [1,5,11] etc., the following three local search 
optimization methods have been used.

(i)	 SD (steepest descent) method is based on the observation 
that if the real valued function E(x) is defined and differentiable in a 
neighborhood of a point x0 then E(x) decreases fastest if one goes from 
x0 in the direction of the negative gradient of E(x) at x0. SD method is 
the simplest algorithm, it simply moves the coordinates in the negative 
direction of the gradient (hence in the direction of the force - the force 
is the (negative) derivative of the potential), without consideration 
of build ups in previous steps, this is the fastest direction making 
the potential energy decrease. SD is robust and easy to implement. 
But SD is not the most efficient especially when closer to minimum 
and in the vicinity of the local minimum. This is to say, SD does not 
generally converge to a local minimum, but it can rapidly improve the 
conformation when system is far from a minimum, quickly remove 
bad contacts and clashes.

(ii)	 Conjugate gradient (CG) method is a method adds an 
orthogonal vector to the current direction of optimization search and 
then moves them in another direction nearly perpendicular to this 
vector. CG method is fast-converging and uses gradient information 
from previous steps. CG brings you very close to the local minimum, 
but performs worse far away from the minimum. CG is slower than 
SD in the early stages of minimization, but becomes more efficient 
closer to the energy minimum. In GROMACS CG cannot be used with 
constraints and in this case SD is efficient enough. When the forces are 
truncated according to the tangent direction, making it impossible to 
define a Lagrangian, CG method cannot be used to find the EM path.

(iii)	 L-BFGS method is a Quasi-Newton method that 
approximates the reverse of Hessian matrix [2E(x)]−1 of E(x) for the 
Newton method search direction −[2E(x)]−1E(x). L-BFGS method 
is mostly comparable to CG method, but in some cases converges 2~3 
times faster with super-linear convergent rate (because it requires 
significantly fewer line search steps than Polak-Ribiere CG). L-BFGS 
of Nocedal approximates the inverse Hessian by a fixed number of 
corrections from previous steps. In practice L-BFGS converges faster 
than CG.

(iv)	 The combination of CG and LBFGS, so-called lbfgs-TNCG-
BFGS method is a preconditioned truncated Newton CG method, it 
requires fewer minimization steps than Polak-Ribiere CG method and 
L-BFGS method, but L-BFGS can sometimes be faster in the terms of 
total CPU times.

If a global optimization is required, approaches such as simulated 
annealing (SA), parallel tempering method (super SA, also called 
replica exchange [60]), Metropolis algorithms and other Monte Carlo 
methods, Simplex method, Nudged Elastic Band method, different 
deterministic methods of discrete or continuous optimization etc. may 
be utilized. The main idea of SA refinement is to heat up the system 
such that the molecule of interest has enough energy to explore a 
wide range of configurational space and get over local optimal energy 
barriers. Relatively large structural rearrangements are permitted at 
these high temperatures. As the temperature is cooled gradually, the 
structural changes proceed in smaller steps, continuing to descend 
toward the global energy minimum.

Solving Eq. (4), without considering Ehydrogen−bonds = 1
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Where Cij, Dij are constants. In [35], this problem is also called 
Lennard-Jones (LJ) Atomic Cluster Optimization problem (where 
within the field of atomic clusters only non-bonded interactions are 
accounted for and particles are considered to be charge-free; e.g., real 
clusters of metals like gold, silver, and nickel). It is very necessary to up 
to date review some effective and efficient computational methods for 
solving Eq. (5). There are numerous algorithms to solve Eq. (5); here we 
just list the ones in The Cambridge Energy Landscape Database (http://
doye.chem.ox.ac.uk/jon/structures/LJ.html) which can obtain the best 
global structures:

Hoare and Pal’s work [22-24] may be the early most successful 
results on LJ problem. The idea is using build-up techniques to construct 
the initial solutions which are expected to represent low energy states, 
and using those initial solutions as starting points for a local search 
method to relax to the optimal solution [23]. The starting seed is the 
regular unit tetrahedron with atoms at the vertexes, the obvious global 
optimal solution for N = 4. Beginning with this tetrahedron, Hoare and 
Pal (1971, 1972) added one atom at a time to construct a sequence of 
polytetrahedral structures and at last got good results up to N = 66 [22-
24]. For example, for N = 5 its globally optimal trigonal bi-pyramid (bi-
tetrahedron) structure is gotten by adding an atom at the tetrahedral 
capping position over a triangular face; following the bi-tetrahedron 
structure, the optimal structure of N = 6 is tri-tetrahedron (another 
known optimal structure for N = 6 is octahedron (using tetrahedral 
capping over triangular faces and half-octahedral capping over square 
faces), which is not a polytetrahedron); for N = 7 its best structure 
constructed is the pentagonal bi-pyramid, a structure with a five-fold 
axis of symmetry. Many computer science data structure procedures 
such as greedy forward growth operator and reverse greedy operator 
can make the buildup technique work well. The application of methods 
of studying non-crystalline clusters to the study of “spherical” face 
centered cubic (fcc) micro crystallites was described in [24]. In [22] 
the chief geometrical features of the clustering of small numbers of 
interacting particles were described.

The data structure of Northby [37] in finding the good starting 
solution is the lattice based structure. The lattice structures consist 
of an icosahedral core and particular combinations of surface lattice 
points. A class of icosahedral packing was by constructed in [36] adding 
successively larger icosahedral shells in layers around a core central 
atom; this icosahedral lattice can be described as 20 slightly flattened 
tetrahedrally shaped fcc units with 12 vertices on a sphere centered at 
the core atom. Atoms within each triangular face are placed in staggered 
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rows in a two dimensional hexagonal close-packed arrangement. Each 
atom in the interior of a face in a given shell is a tetrahedral capping 
position relative to three atoms in the underlying shell. Northby (1987) 
relaxed the structure of [36] to get his IC and FC multilayer icosahedral 
lattice structures [37]. The IC lattice can be referred to the FORTRAN 
code in [54]; it consists of all those sites which will comprise the 
outer shell of the next complete Mackay [36] icosahedron. FC lattice 
is a slight modification of IC lattice in that its outer shell maintains 
icosahedral symmetry and consists of points at the icosahedral vertices 
and the stacking fault positions of the outer IC shell. Basing on the IC 
and FC lattices, Northby (1987) gave his algorithm first finding a set 
of lattice local minimizers and then relaxing those lattice minimizers 
by performing continuous minimization starting with those lattice 
minimizers [37]. The algorithm was summarized as Algorithm 1 and 
Algorithm 2 of [54].

The great majority of the best known solutions of Northby [37] are 
icosahedral in character. The hybridization of global search and local search 
methods, usually, is more effective to solve the large scale problem than 
the global search method or local search method working alone. Catching 
those two ideas, Romero et al. (1999) combined a genetic algorithm with 
a stochastic search procedure on icosahedrally derived lattices [3,41]. The 
structures of the optimal solutions gotten in [41] are either icosahedral 
or decahedral in character. The best results of [50] for N = 82, 84, 86, 88, 
92, 93, 94, 95, 96, 99, 100 were gotten by using a genetic algorithm alone. 
Deaven et al. (1996) also using the genetic algorithm got the optimal value 
known for the magic number N = 88 [16].

The successful works to improve Northby’s results in [37] were 
mainly done by Xue [53,54], Leary [33], and Doye et al. [17,18].

Xue (1994a) introduced a modified version of the Northby 
algorithm [53]. He showed that in some cases the relaxation of the 
outer shell lattice local minimizer with a worse potential function 
value may lead to a local minimizer with a better value. In Northby’s 
algorithm [37] the lattice search part is a discrete optimization local 
search procedure, which makes a lattice move to its neighboring lattice 
with O(

5
3N ) time complexity. In [53] Xue (1994a) introduced a simple 

storage data structure to reduce the time complexity to O(
2
3N ) per 

move; and then used a two-level simulated annealing algorithm within 
the supercomputer CM-5 to be able to solve fast the LJ problem with 
sizes as large as 100,000 atoms. In [54] by employing AVL trees [25] 
data structure Xue (1994b) furthermore reduced the time complexity 
to O (log N) if NN (nearest neighbor) potential function is used. Xue 
(1994b) relaxed every lattice local minimizer found instead of relaxing 
only those lattice local minimizers with best known potential function 
value by a powerful Truncated Newton local search method [54], and 
at last got the best results known for N = 65, 66, 134, 200, 300.

Leary (1997) gave a successful Big Bang Algorithm [33] for getting 
the best values known of N = 69, 78, 88, 107, 113, 115. In [33], the 
FCC lattice structure is discussed and its connections are made with 
the macro cluster problem. It is also concluded in [33] that almost all 
known exceptions to global optimality of the well-known Northby 
multilayer icosahedral conformations for micro clusters are shown 
to be minor variants of that geometry. The Big Bang Algorithm 
contains 3 steps: Step 1 is an initial solution generating procedure 
which randomly generates each coordinate of the initial solution with 
the independently normal distribution; Step 2 is to generate the new 
neighborhood solution by discrete-typed fixed step steepest descent 
method, which is repeated until no further progress is made; Step 3 is 
to relax the best solution gotten in Step 2 by a continuous optimization 
method–conjugate gradient method.

Doye et al. (1995) investigated the structures of clusters by mapping 
the structure of the global minimum as a function of both cluster size 
and the range of the pair potential which is appropriate to the clusters of 
diatomic molecule, C60 molecule, and the ones between them both [17]. 
For the larger clusters the structure of the global minimum changes from 
icosahedral to decahedral to fcc as the range is decreased [17]. In [18], 
Doye et al. (1995) predicted the growth sequences for small decahedral and 
fcc clusters by maximization of the number of NN contacts.

Calvo et al. (2001) gave some results on quantum LJ Clusters in the 
use of Monte Carlo methods [9].

− Xiang et al. (2004a) presented an efficient method based on lattice 
construction and the genetic algorithm and got global minima for N = 
310~561 [52] in 2004, Xiang et al. (2004b) continued to present global 
minima for N = 562~1000 [51].

− Barron-Romero (2005) found the best solutions for N = 542–3, 
546–8 in the use of a modified peeling greedy search method [4].

Takeuchi (2006) found best solutions for N = 506, 521, 537–8 and 
541 by a clever and efficient method “using two operators: one modifies 
a cluster configuration by moving atoms to the most stable positions 
on the surface of a cluster and the other gives a perturbation on a cluster 
configuration by moving atoms near the center of mass of a cluster” [45].

Lai et al. (2011a) found best solutions for N = 533 and 536 using 
the dynamic lattice searching method with two-phase local search and 
interior operation [31,32,55].

Algorithms to get the structures at the magic numbers N = 17, 23, 
24, 72, 88 (the exceptions to [41]):

Freeman et al. (1985) presented the best value for N = 17 when 
the thermodynamic properties of argon clusters were studied by a 
combination of classical and quantum Monte Carlo methods [20]. The 
poly-icosahedral growth of Farges et al. (1985) starts from a 13-atom 
primitive icosahedron containing a central atom and 12 surface atoms 
[19]. On each one of the five tetrahedral sites, surrounding a particular 
vertex, a new atom is added and finally a sixth atom is placed on top 
to create a pentagonal cap. In this way a 19-atom structure being made 
of double interpenetrating icosahedra, which is 13-atom icosahedra 
sharing 9 atoms, is obtained; i.e., for three pentagonal bi-pyramids each 
one shares an apex with its nearest neighbor. In this way a 23-atom 
model consisting of three interpenetrating icosahedra is gotten for the 
best value known.

Wille (1987) used the SA method yielding low-lying energy states 
whose distribution depends on the cooling rate to find the best solution 
known for N = 24 [49].

Coleman et al. (1997) proposed a build-up process to construct the 
optimal solution structures. The HOC (half octahedral cap) structure 
of the optimal solution for N = 72 is found by a prototype algorithm 
designed using the anisotropic effective energy simulated annealing 
method at each build-up stage [14].

Wales and Doye (1997) gave the lowest values known for N = 192, 
201 [46]. Their method is so-called basin-hopping method, in which 
first the transformed function f (x) = min {f(x)} was defined and 
performed starting from x by the PR conjugate gradient method and 
then the energy landscape for the function f (x) was explored using a 
canonical Monte Carlo simulation. 

Leary (2000) has developed techniques for moving along sequences 
of local minima with decreasing energies to arrive at good candidates 
for global optima and got the best value known on N = 185.
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Now we have the outline of some successful optimization 
methods used to solve Eq.s (4) ~ (5). We have found the hybrid idea of 
optimization methods was not emphasized very much (especially for 
solving Eq. (5)). Thus, in Section 2 of this paper we will emphasize the 
hybrid idea of optimization methods by introducing our own hybrid 
methods used to solve Eq.s (4) ~ (5). Section 3 will present our recent 
results of applying the hybrid idea of SD and CG and SD again to do 
EM of some NMR and X-ray prion protein structures in the PDB Bank 
(www.rcsb.org); interesting findings will be reported in this Section. 
Why we choose prion proteins in this study is due to prions effect 
humans and almost all animals for a major public health concern 
(e.g. milks and meats we daily drink and eat). At last, in Section 4, we 
give a concluding remark on the effective and efficient hybrid idea of 
optimization methods.

The Hybrid Idea and Some Hybrid Optimization 
Methods

In this Section, we use how to construct molecular structures 
of prion amyloid fibrils at AGAAAAGA segment as an example to 
illuminate the hybrid idea and some hybrid optimization methods we 
designed. 

Neurodegenerative amyloid diseases such as Alzheimer’s, 
Parkinson’s and Huntington’s all featured amyloid fibrils. Prions also 
cause a number of neurodegenerative diseases too. All these amyloid 
fibrils in 3-dimensional quaternary structure have 8 classes of steric 
zippers, with strong van der Waals interactions between sheets and 
hydrogen bonds between-strands. Currently, there is no structural 
information about prion AGAAAAGA amyloid fibrils because of 
unstable, non-crystalline and insoluble nature of this region, though 
numerous laboratory experimental results have confirmed this region 
owning an amyloid fibril forming property (initially described in 
1992 by Stanley B. Prusiner’s group). We also did accurate computer 
calculations on this region and confirmed the amyloid fibril property 
in this palindrome region [67,73].

In [58], we constructed three models, model 1 belongs to Class 
7 (antiparallel, face-back, up-up) and models 2–3 belong to Class 1 
(parallel, face-to-face, up-up) of steric zippers. The models were firstly 
optimized by SD and then followed by CG. SD has fast convergence 
but it is slow when close to minimums. CG is efficient but its gradient 
RMS and GMAX gradient do not have a nice convergence. When the 
models could not be optimized furthermore, we employed standard SA 
method (that simulates the annealing process of crystal materials with 
Monte Carlo property). After SA, we refined the models by SD and 
then CG again. SA is a global search optimization method [64] that 
can make local optimal jump out of / escape from the local trap. We 
found the refinement results in a loss of potential energy nearly the 
same magnitude as that of SA; this implies to us SA is very necessary 
and very effective in our molecular modeling. Numerical results show 
to us the hybrid is very necessary, effective and efficient.

When the gradient or its generalizations of the target/objective 
function E(x) are very complex in form or they are not known, 
derivative-free methods benefit optimization problems. In [70], we 
introduced derivative-free discrete gradient (DG) method [2] into 
the derivative-free global search SA optimization method or genetic 
algorithms (GAs, which simulate the process natural competitive 
selection, crossover, and mutation of species), and designed hybrid 
methods SADG, GADG. In implementation, the hybrids of DG + 
SADG / GADG + DG were used, and at last SD+CG + SA + SD+CG 
of Amber package [11] were used to refine the models. We found the 

hybrids work very well, and more precise best solutions for N = 39, 
40, 42, 48, 55, 75, 76, and 97 were found and their figures show that 
their structures are more stable than the ones currently best solutions 
known. We also found the hybrids of evolutionary computations with 
simulate annealing SA-SAES (μ + λ), SA-SACEP performs better than 
evolutionary computations or SA work alone [59]. Canonical dual 
theory in some sense is the hybrid of the primal and the dual. In [68], 
we solved the dual problem and then got the solutions for the primal 
problem. We found the refinement using AMBER package is not 
necessary. This implies to us the hybrid of primal and dual in canonical 
dual theory is good enough and effective.

As said in Section 1, in some cases, CG cannot be used to find the 
EM path; this point will also be shown in next Section (Table 1) Thus, in 
[67], we specially studied and implement the LBFGS method designed 
by us and then hybridize it with the LBFGS method of AMBER package. 
We found the hybrid is very necessary and effective.

By our numerical experiences shown above, the hybrid idea is very 
necessary, effective and efficient for some hybrid optimization methods 
in known packages or designed by us. In next Section, we will apply 
the hybrid idea to do some practical works for some important prion 
protein NMR and X-ray structures deposited in the PDB Bank.

An Application to Prion Protein Structures, Focusing 
on the β2-α2 Loop

Before we use the structure taken from PDB Bank, usually we need 
to relax it, in order to remove bad contacts and also fix up hydrogen 
positions. Fairly short local optimization is sufficient to refine and relax 
the structure. We will use SD-CG-SD local optimization methods. 
In SD, its search direction is n-dimensional search and its step-
length search is a 1-dimensional search. In CG, the search is usually 
in a 2-dimensional subspace and conjugacy is a good property only 
associated with exact line search [43]. Using the hybrid of SD and CG is 
also in order to remove all these (dimensional) unbalances. In our EM 
here, the free package Swiss-PDB Viewer 4.1.0 (spdbv.vital-it.ch) that 
has been developed for 20 years is used, we set 3000 steps for SD, then 
3000 steps for CG, and then 3000 steps for SD again, Bonds, Angles, 
Torsions, Improper, Non-bonded and Electrostatic are considered, 
12.000 Å is chosen for the Cutoff, stop SD or CG when delta E between 
two steps is below 0.005 kJ/mol, and stop SD or CG when Force acting 
on any atom is below 1.000.

We found, for the research of prion proteins, the S2-H2 loop (and 
its interactions with the C-terminal of H3) is a focus [6, 7, 8, 10, 12, 13, 
15, 21, 27, 34, 47, 48, 28, 39, 40, 44, 56, 71, 29, 30, 26]. All prion protein 
structures have high similarity in three -helices (H1, H2, H3) and two 
β-strands (S1, S2), but there is a great difference just at this S2-H2 loop:

(i) Structure with disordered S2-H2 loop:
Mouse PrP (1AG2.pdb at 25°C),
Human PrP (1QLX.pdb),
Bovine PrP (1DWY.pdb),
Syrian Hamster PrP (1B10.pdb),
Dog PrP (1XYK.pdb) (- resist to prion infection),
Cat PrP (1XYJ.pdb),
Sheep PrP (1UW3.pdb),
Mouse PrP [N174T] (1Y15.pdb),
Human PrP [Q212P]-M129 (2KUN.pdb),
Human PrP-M129 (1QM1.pdb),
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Rabbit PrP [S173N] (2JOH.pdb),
Rabbit PrP [I214V] (2JOM.pdb),
Rabbit PrP [S170N] (4HLS.pdb),
Rabbit PrP [S174N] (4HMM.pdb),
Rabbit PrP [S170N, S174N] (4HMR.pdb),
(ii) Structure with highly and clearly ordered S2-H2 loop:
Mouse PrP (2L39.pdb at 37°C),
Mouse PrP [V166A] (2KFO.pdb),
Mouse PrP [D167S] (2KU5.pdb at 20°C),
Mouse PrP [D167S, N173K] (2KU6.pdb),
Mouse PrP [Y169G] (2L1D.pdb),
Mouse PrP [Y169A] (2L40.pdb),
Mouse PrP [S170N] (2K5O.pdb),
Mouse PrP [S170N, N174T] (1Y16.pdb),
Mouse PrP [F175A] (2L1E.pdb),
Mouse PrP [Y225A, Y226A] (2KFM.pdb),
Mouse PrP [Y169A, Y225A, Y226A] (2L1K.pdb at 20°C),
Elk PrP (1XYW.pdb),

Pig PrP (1XYQ.pdb),
Bank Vole PrP (2K56.pdb),
Tammar Wallaby PrP (2KFL.pdb),
Rabbit PrP (2FJ3.pdb, 3O79.pdb),
Horse PrP (2KU4.pdb),
Where elk and Bank Vole can be infected by prions though they 

have a highly and clearly ordered S2-H2 loop, and the codes in the 
brackets are the PDB codes in the PDB Bank. For all these NMR and 
X-ray structures we did SD-CG-SD relaxation and the variations of the 
EMs are listed in Tab. 1. From Table 1, we can see the energy decreases 
from SD to CG and from CG to SD. For mouse PrP [Y169A], CG is not 
working well, but it adjusts the SD methods so that it makes SD-CG-SD 
work very well in the second round.

After the SD-CG-SD relaxation of all the structures, now these 
optimized structures can be used to obtain some helpful structural 
information [e.g. (i) hydrogen bonds (Table 2), (ii) electrostatic 
charge distributions on the protein structure surface (Figure 1) 
and (Table 4), (iii) salt bridges (Table 3), and (iv) π-π-stacking and 
π-cations (Table 5); here why we consider the information of (i)~(iv) 

Species SD CG SD
Mouse PrP -7234.507 (391) -7243.597 (13) -7275.160 (45)
Human PrP -7460.885 (296) -7610.384 (195) -7640.157 (54)
Bovine PrP -7698.001 (544) -7809.687 (255) -7819.315 (26)
Syrian Hamster PrP -7418.702 (225) -7653.251 (258) -7688.044 (50)
Dog PrP -7148.517 (549) -7225.084 (151) -7251.191 (60)
Cat PrP -6935.915 (192) -7186.961 (186) -7382.361 (229)
Sheep PrP -8066.183 (291) -8066.300 (22) -8204.010 (179)
Mouse PrP [N174T] -7418.443 (211) -7657.886 (206) -7923.308 (419)
Human PrP [Q212P]-M129 -7662.032 (464) -7688.836 (49) -7846.123 (424)
Human PrP-M129 -7249.798 (350) -7345.074 (114) -7410.470 (99)
Rabbit PrP [S173N]-NMR -7173.492 (271) -7666.456 (492) -7684.357 (36)
Rabbit PrP [I214V]-NMR -7785.640 (774) -7802.710 (39) -7835.354 (88)
Rabbit PrP [S170N]-X-ray -8682.104 (414) -8753.827 (178) -8827.220 (254)
Rabbit PrP [S174N]-X-ray -8551.921 (286) -8659.515 (160) -8739.475 (178)
Rabbit PrP [S170N,S174N]-X-ray -8864.615 (363) -8899.511 (65) -8945.262 (106)
Mouse PrP - at 37˚C -7679.395 (212) -8031.103 (397) -8134.173 (213)
Mouse PrP [V166A] -8040.172 (436) -8153.529 (174) -8164.996 (22)
Mouse PrP [D167S] - at 20˚C -7938.545 (594) -7987.788 (83) -8051.072 (121)
Mouse PrP [D167S,N173K] -7615.915 (546) -7751.804 (205) -7906.153 (290)
Mouse PrP [Y169G] -7713.983 (249) -7885.343 (147) -7913.277 (27)

Mouse PrP [Y169A]
-7948.267 (507) -7949.964 (1) -7955.516 (3)
-7972.101 (17) -8064.175 (142) -8143.807 (179)

Mouse PrP [S170N] -7341.668 (74) -7790.935 (262) -7947.893 (224)
Mouse PrP [S170N,N174T] -7988.545 (468) -8126.978 (241) -8149.948 (55)
Mouse PrP [F175A] -7660.438 (680) -7859.632 (381) -7873.355 (34)
Mouse PrP [Y225A,Y226A] -7457.356 (244) -7588.338 (109) -7757.797 (213)
Mouse PrP [Y169A,Y225A,Y226A] - at 20˚C -7609.773 (173) -7690.231 (45) -7700.162 (4)
Elk PrP -7894.305 (875) -7959.371 (160) -7978.686 (53)
Pig PrP -6354.886 (141) -6735.155 (321) -6813.048 (109)
Bank Vole PrP -7727.260 (478) -7799.991 (118) -7951.502 (376)
Tammar Wallaby PrP -8028.082 (393) -8195.817 (248) -8238.248 (69)
Rabbit PrP-NMR -7712.972 (814) -7730.035 (36) -7790.620 (154)
Rabbit PrP-X-ray -8643.309 (602) -8658.327 (40) -8717.344 (187)
Horse PrP -7335.273 (226) -7614.526 (433) -7633.569 (45)

Table 1: Energy variations during the energy minimizations (numbers of iterations are in the brackets).
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is due to “the performance of protein biological function is driven by 
a number of non-covalent interactions such as hydrogen bonding, 
ionic interactions, Van der Waals forces, and hydrophobic packing” 
(en.wikipedia.org/wiki/Protein structure)] at the S2-H2 loop, in order 
to furthermore understand the S2-H2 loop: why some species has a 
clearly and highly ordered S2- H2 loop and why some species just has 
a disordered S2-H2 loop. (i) Using the VMD package (www.ks.uiuc.

edu/Research/vmd/), with Table 2, we may observed that the species 
owning the disordered S2-H2 loop usually does not have a 310-helix 
in the S2-H2 loop (except for sheep PrP, rabbit PrP [S170N]-X-ray, 
rabbit PrP [S174N]-X-ray, and rabbit PrP [S170N,S174N]-X-ray), but 
the species that has the clearly and highly ordered S2-H2 loop usually 
owns a 310-helix, constructed by the following hydrogen bond(s) 
respectively:

Species At the S2-H2 loop Linking with  the c-terminal  
end of  H3

Mouse PrP D178.OD1–R164.2HH1 (1.97 Å) S170:OG–Y225:HH (1.71 Å)
Human PrP    
Bovine PrP    

Syrian Hamster PrP
Y169.HH–D178.OD2 (1.80 Å)

 
T183.OG1–Y162.H (1.74 Å)

Dog PrP D167.O–S170.H (1.82 Å)  
Cat PrP    

Sheep PrP
P165.O–Q168.H (1.90 Å)

Y163.OH–Q217.2HE2 (1.91 Å)D178.OD2–Y128.HH (1.81 Å) Y163.O–M129.H (1.79 Å)
N171.O–N171.2HD2 (1.84 Å) T183.OG1–Y162.H (1.92 Å)

Mouse PrP [N174T]
D178.OD2–Y128.HH (1.72 Å)

 
Y163.H–M129.O (1.79 Å)

Human PrP [Q212P]-M129
N171.OD1–N173.H (1.84 Å)

Q172.OE1–Y218.HH (1.68 Å)
Y162.H–T183.OG1 (1.94 Å)

Human PrP-M129 Y162.H–T183.OG1 (1.89 Å)  

Rabbit PrP [S173N]-NMR  
E220.OE1–Y162.HH (1.68 Å)
D177.OD2–Y127.HH (1.71 Å)

Rabbit PrP [I214V]-NMR
Y168.O–N170.2HD2 (1.86 Å)

 
Q171.O–V175.H (1.70 Å)

Rabbit PrP [S170N]-X-ray
P165.O–Q168.H (1.93 Å)

Q172.OE1–Q219.2HE2 (1.85 Å)
V166.O–Y169.H (1.92 Å)

Rabbit PrP [S174N]-X-ray
P165.O–Q168.H (1.94 Å)

 V166.O–Y169.H (1.92 Å) Y169.HH–D178.OD2 (1.74 Å)
N171.HD2–N174.ND2 (1.95 Å)

Rabbit PrP [S170N,S174N]-X-ray
P165.O–Q168.H (1.92 Å)

Q172.OE1–Q219.2HE2 (1.89 Å)
V166.O–Y169.H (1.93 Å) Y169.HH–D178.OD2 (1.78 Å) N171.OD1–N174.H (1.88 Å)

Mouse PrP -  at 37˚C Y163.O–M129.H (1.71 Å) R164.O–Y169.HH (1.80 Å) V166.O–Y169.H (1.83 Å) 
D178.OD2–Y128.HH (1.74 Å) S170.O–Y218.HH (1.61 Å)

Mouse PrP [V166A]
R164.HE–Q168.OE1 (1.90 Å)

 
T183.OG1–Y162.H (2.02 Å)

Mouse PrP [D167S] - at 20˚C
R164.2HH2–Q168.OE1 (1.90 Å)

 
V166.O–Y169.H (1.87 Å) T183.OG1–Y162.H (1.90 Å)

Mouse PrP [D167S,N173K]
R164.CZ–Q168.1HE2 (1.96 Å)

 
V166.O–Y169.H (1.82 Å) V166.O–S170.H (1.75 Å)

Mouse PrP [Y169G] T183.OG1–Y162.H (1.95 Å)  

Mouse PrP [Y169A]
P165.O–S170.HG (1.91 Å)

Q168.O–Y225.HH (1.73 Å)
T183.OG1–Y162.H (1.94 Å)

Mouse PrP [S170N]
N170.2HD2–N171.OD1 (1.91 Å)

 
T183.OG1–Y162.H (1.84 Å)

Mouse PrP [S170N,N174T]
Y169.HH–D178.OD2 (2.01 Å)

 
N171.O–N171.2HD2 (1.81 Å) T183.OG1–Y162.H (1.79 Å)

Mouse PrP [F175A]
V166.O–Y169.H (1.76 Å)

R164.O–Y218.HH (1.61 Å)
N171.1HD2–N174.ND2 (1.75 Å) N171.2HD2–N171.O (1.78 Å)

Mouse PrP [Y225A,Y226A]

D178.OD2–Y128.HH (1.61 Å)

 
Y163.O–MET129.H (1.77 Å) P165.O–Q168.2HE2 (1.85 Å)
S170.OG–N174.1HD2 (1.95 Å)
N171.H–N174.OD1 (1.94 Å) N173.2HD2–HIS177.NE2 (1.93 Å)
T183.OG1–Y162.H (1.96 Å)
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Species At the S2-H2 loop linking to the C-terminal  end 
of  H3

Mouse PrP D178.OD1–R164.NE (4.01 Å) D178.OD1–R164.NH1 (2.96 Å)
Human PrP
Bovine PrP
Syrian Hamster PrP
Dog PrP

Cat PrP
D178.OD1–R164.NH2 (4.59 Å)
D178.OD2–R164.NE (2.97 Å) D178.OD2–R164.NH1 (4.76 Å)
D178.OD2–R164.NH2 (3.06 Å)

Sheep PrP
Mouse PrP [N174T]

Human PrP [Q212P]-M129
E168.OE1–R164.NH1 (3.07 Å)

E168.OE1–R164.NH2 (3.33 Å)

Human PrP-M129
D178.OD2–R164.NH1 (2.99 Å)

D178.OD2–R164.NH2 (3.13 Å) D178.OD2–R164.NE (4.75 Å)
D178.OD1–R164.NH1 (4.61 Å)

Rabbit PrP [S173N]-NMR
Rabbit PrP [I214V]-NMR

Rabbit PrP [S170N]-X-ray
D178.OD2–R164.NH2 (3.16 Å)
D178.OD2–R164.NE (4.14 Å) D178.OD1–R164.NH2 (4.06 Å) D178.OD1–H177.
ND1 (2.95 Å)

Rabbit PrP [S174N]-X-ray
Rabbit PrP [S170N,S174N]-X-ray
Mouse PrP - at 37˚C
Mouse PrP [V166A]
Mouse PrP [D167S] -  at 20˚C
Mouse PrP [D167S,N173K]
Mouse PrP [Y169G]
Mouse PrP [Y169A]

Mouse PrP [S170N]
D167.OD1–R229.NH1 (3.03 Å)

D167.OD1–R229.NH2 (3.81 Å)
Mouse PrP [S170N,N174T]
Mouse PrP [F175A]
Mouse PrP [Y225A,Y226A]
Mouse PrP [Y169A,Y225A,Y226A] - at 20˚C
Elk PrP
Pig PrP D178.OD2–R164.NH1 (3.00 Å)
Bank Vole PrP
Tammar Wallaby PrP

Rabbit PrP-NMR H176.ND1–E210.OE1 (2.96 Å)

Rabbit PrP-X-ray
Horse PrP

Table 3: Salt bridges at the S2-H2 loop, and its linkage with the C-terminal end of H3 (in the brackets are the distances of the salt bridges).

Mouse PrP [Y169A,Y225A,Y226A] -  at 20˚C    

Elk PrP
P165–Q168.H (1.80 Å)

 
Y169.HH–D178.OD2 (1.73 Å) T183.OG1–Y162.H (1.79 Å)

Pig PrP    

Bank Vole PrP
P165.O–Q168.H (1.99 Å)

 
T183.OG1–Y162.H (1.92 Å)

Tammar Wallaby PrP
P165.O–Q168.N (1.98 Å)

 
I166.O–Y169.H (1.92 Å) T183.OG1–M162.H (1.79 Å)

Rabbit PrP-NMR T182.OG1–Y161.H (1.81 Å)  

Rabbit PrP-X-ray
V166.O–Y169.H (1.95 Å)

 
D178.OD2–Y169.HH (1.82 Å)

Horse PrP D178.OD2–Y169.HH (1.71 Å)  
Table 2: Hydrogen bonds at the S2-H2 loop, and its linkage with the C-terminal end of H3 (in the brackets are the distances of the hydrogen bonds).
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Mouse PrP (R164), (H177), (K220), (R156), (R148), (K185), (R151, R136, K194)
Human PrP (R164), (R228), (R220), (H155, R156, K185, H187, K194,)
Bovine PrP (R164), (K185), (K194), (H155, R156, R136, H187, R220)
Syrian Hamster PrP (R164), (K185), (K194), (K220), (R136, R156), (R148, R151)
Dog PrP (R164), (R228), (R220), (K185), (K194), (R151, R156)
Cat PrP (R164), (H187, R185), (K194), (R228), (R229), (K220)
Sheep PrP (R164), (K185), (R228), (H187, K194, H155, R156, R136, R220)
Mouse PrP [N174T] (R164), (R229, R230), (K220), (K185, H187, K194) (R156), (H140, R151, R136, R148)
Human PrP [Q212P]-M129 (R164), (K185), (R228)
humanPrP-M129 (R164, H177, K185, H187, K194, H155, R156, R220, R208, R151, R148, H140), (R228)
Rabbit PrP [S173N]-NMR (R163, R135, K184, H186), (R227), (K193, R155), (R147), (H139, R135, R150)
Rabbit PrP [I214V] (R163, R135), (R227), (H186, K184), (K193), (R147), (H139, R135, R150)
Rabbit PrP [S170N]-X-ray (R164, R136, H187, K185, K194), (R228), (H140, R208), (H140), (R148), (R156)
Rabbit PrP [S174N]-X-ray (R164, R136, K185, - H187, R156, K194, R136), (R228), (H140), (R148), (R156)
Rabbit PrP [S170N,S174N]-X-ray (R164, R136, K185, H187, K194, R156, R136), (R228), (H140), (R151), (R148), (R156)
Mouse PrP at 37˚C (R164), (R229, R230), (K220), (K185, H187, K194, R136), (R148), (R151)
Mouse PrP [V166A] (R164, K185), (R136, K220, R229, R208), (R230), (K194), (R156), (R148), (R151)
Mouse PrP [D167S] at 20˚C (R164, K185, H187, K194), (R229, R230), (R156), (R151, R136), (R148), (K220)
Mouse PrP [D167S,N173K] (R164), (H177), (R229 R230), (K185, H187), (K194), (R136, R156), (R156), (R148),(R151),(K220)
Mouse PrP [Y169G] (R164, K185, K194), (R230), (R229), (K220), (R136), (R156), (R151), (R148)
Mouse PrP [Y169A] (R164, K185, K194), (R230), (R229), (K220), (R136, R151), (R156), (R148)
Mouse PrP [S170N] (R164), (R230), (R229), (K185), (K194, H187, R136), (R156), (K220), (R208), (R151), (R148)
Mouse PrP [S170N,N174T] (R164), (R229), (R230), (K194, K185), (R156), (R136), (R148), (R151), (R208), (K220)
Mouse PrP [F175A] (R164, K185), (R229), (R230), (K194, H187, R136, R156, R151), (R148), (H140)
Mouse PrP [Y225A,Y226A] (R164, K185), (R229, R230), (R156), (K194, R136), (R148, R151), (R208), (K220)
Mouse PrP [Y169A,Y225A,Y226A] (R164), (R229), (R230), (K185, K194), (R136, K220), (R148), (R151)
Elk PrP (R164), (R228), (K185), (HHT121), (K194), (R156), (R136, R220), (R148), (R151)
Pig PrP (R164), (R228), (K185, H187, K194, R156, R136), (K220), (R148, R151)
Bank Vole PrP (R164), (R229), (K185), (K194), (R156), (R148), (R151, R136), (H140), (K220)
Tammar Wallaby PrP (R164), (R227), (K185, H187), (K194), (R156), (R148), (R136, H140, R148, R151, R156)
Rabbit PrP-NMR (R163, R227), (K184, HHT124)-(K193, R155, R135, R150, H139, R147), (R147)
Rabbit PrP-X-ray (R164, HHT126, K185)-(K194, H187, R136), (R228), (R156), (R148), (R151), (H140)
Horse PrP (R164), (R228,K220,R136),(K194,H187,K185),(R156),(R148, R151),(H177),(K204),(R208),(HHT119)

Table 4: Cliques of positively charged residues distributed on the surface of each optimized structure of the 33 PrPs (one bracket is one clique).

Species π-π-stacking π-cations
Mouse PrP F175–Y218, Y162–Y128, H187–F198 F141–R208
Human PrP   R164–Y169
Bovine PrP   Y128–R164
Syrian Hamster PrP Y169–F175–Y218  
Dog PrP    
Cat PrP   Y150–R156
Sheep PrP F141–Y150, Y169–F175–Y218  
Mouse PrP [N174T] F141–Y150, Y169–F175–Y218 Y128–R164
Human PrP [Q212P]-M129   R228–H237
Human PrP-M129    
Rabbit PrP [S173N]-NMR   L124–Y127
Rabbit PrP [I214V]-NMR H139–Y149 Y148–R155
Rabbit PrP [S170N]-X-ray Y169–F175 F141–R208
Rabbit PrP [S174N]-X-ray Y169–F175 F141–R208
Rabbit PrP [S170N,S174N]-X-ray Y169–F175 F141–R208
Mouse PrP - at 37˚C   R164–Y169
Mouse PrP [V166A] Y169–F175  
Mouse PrP [D167S] -  at 20˚C F175–Y218  
Mouse PrP [D167S,N173K] F175–Y218, H187–F198  
Mouse PrP [Y169G] F141–Y150, F175–Y218, Y225–Y226 Y128–R164
Mouse PrP [Y169A] W145–Y149, H187–F198  
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Mouse PrP [S170N] Y225–Y226  
Mouse PrP [S170N,N174T]   R164–Y169
Mouse PrP [F175A] Y163–Y218 F141–R208
Mouse PrP [Y225A,Y226A] Y169–F175–Y218  
Mouse PrP [Y169A,Y225A,Y226A] - at 20˚C    
Elk PrP Y169–F175–Y218  
Pig PrP    
Bank Vole PrP Y169–F175–Y218 R164–Y169
Tammar Wallaby PrP   R156–F198
Rabbit PrP-NMR F140–Y149 L124–Y127
Rabbit PrP-X-ray Y169–F175  
Horse PrP   R156–F198

Table 5: π-π-stacking and π-cations for each of the 33 PrPs.

 

 
Figure 1: Positively (in blue) and negatively (in red) charged residues distributed on each protein structure surface of the 33 PrPs. The first three rows of PrPs are with 
highly and clearly ordered S2–H2 loop; but the last three rows of PrPs are with disordered S2–H2 loop.
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V166–Y169 – mouse PrP at 37°C, mouse PrP [D167S, N173K], 
mouse PrP [F175A], and rabbit PrP-X-ray,

R164–Q168 – mouse PrP [V166A],
P165–Q168 – mouse PrP [Y225A, Y226A], elk PrP, Bank Vole PrP,
P165–Q168, I166–Y169 – Tammar Wallaby PrP

ii) Seeing Figure 1 and Table 4, we may know that at the S2-H2 loop 
it is mainly covered by the electrical cloud of negatively (in red color) 
charged residues [except for mouse PrP[D167S,N173K], rabbit PrP-
NMR and horse PrP etc. (Figure 2)], with positively (in blue) charged 
residues R164 (for all species) and H177 (for mouse PrP, human 
PrPM129, mouse PrP [D167S, N173K] only) at the N-terminal end 

 

Figure 2: Surface electrostatic charge distributions for each of the 33 PrPs. The first three rows of PrPs are with highly and clearly ordered S2–H2 loop; but the last three 
rows of PrPs are with disordered S2–H2 loop. Blue is for positive charge whereas red is for negative charge.
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and C-terminal end of S2-H2 loop respectively (we found there is a salt 
bridge R164–D178 linking this loop of rabbit PrP-NMR, rabbit PrP-
X-ray, horse PrP, dog PrP, elk PrP and buffalo PrP for long time MD 
simulations [61-63] [57,66,69,72,74,]). From Table 4, we might see that 
the negatively charged S2-H2 loop might have long distance nuclear 
over Hauser effect (NOE) interactions with the positively charged 
residues such as K204, R208, K/R220, R227, R228, R229, and R230 at 
the C-terminal end of H3. (iii) The salt bridges in Table 3 might be not 
very strong and will be quickly broken in a long time MD simulations 
[62]. (iv) Lastly, we present some bioinformatics of π - π -stacking and 
π -cations (one kind of van der Waals interactions) at the S2-H2 loop. 
Seeing Table 5, we may know at S2-H2 loop and its contacts with the 
C-terminal end of H3 there are the following π-π-stacks Y169–F175, 
F175–Y218, Y163–Y218, and the following π -cations R164–Y169, 
R164–Y128, which clearly contribute to the clearly and highly ordered 
S2-H2 loop structures [65]. For buffalo PrP, we found another two 
π -stacking: Y163–F175–Y128 [65,66]. Thus, for PrPs, we found an 
interesting “π-circle” Y128–F175–Y218–Y163– F175–Y169–R164–
Y128 (–Y162) around the S2-H2 loop [75].

A Concluding Remark
In optimization, especially for solving large scale or complex or 

both optimization problems, the hybrid of optimization (local search 
or global search) methods is very necessary, and very effective and 
efficient for solving optimization problems. In molecular mechanics, to 
optimize its potential energy, even just one part of it e.g., the Lennard-
Jones potential, is still a challenge to optimization methods; the 
hybrid idea is very helpful and useful. An application to prion protein 
structures is then done by the hybrid idea. Focusing on the β2-α2 loop 
of prion protein structures, we found (i) the species that has the clearly 
and highly ordered β2-α2 loop usually owns a 310-helix in this loop, (ii) 
a “π-circle” Y128–F175–Y218–Y163–F175–Y169–R164–Y128(–Y162) 
is around the β2-α2 loop. In conclusion, this paper proposes a hybrid 
idea of optimization methods to efficiently solve the potential energy 
minimization problem and the LJ clusters problem. We first reviewed 
several most commonly used classical potential energy functions and 
their optimization methods used for energy minimization, as well as 
some effective computational optimization methods used to solve 
the problem of Lennard-Jones clusters. In addition, we applied this 
hybrid idea to construct molecular structures of prion amyloid fibrils 
at AGAAAAGA segment, by which we provided the additional insight 
for the β2-α2 loop of prion protein structures. This study should be of 
interest to the protein structure field.
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