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Introduction
The applications of today’s assisted reproductive technologies 

in human infertility have seemingly evolved in a fairly predictable 
manner, or have they? Typically beginning with historic and often 
intriguing animal modeling efforts, there is generally an initial purpose 
that ends up with more diverse implications when used in Reproductive 
Medicine. At times the technical incorporation and acceptance by 
scientists is slow and progressive, before its importance is ultimately 
widely accepted. Case in point is both the evolution of preimplantation 
genetic screening of embryos and the recent conversion to vitrification 
for their cryopreservation. Whereas, other important technologies 
like sperm injection and laser ablation have had an immediate 
impact with worldwide acceptance. But what was the origin of these 
breakthroughs in technology, and their associated stories? The purpose 
of this communication is to contrast the historical evolution of these 
four critically important assisted reproductive technology procedures, 
which have been successfully integrated to establish an irreplaceable 
foundation in the success of today’s IVF industry.

Genetic Testing of Preimplantation Embryos 
Early efforts to sex rabbit embryos [1] were initiated by two brilliant 

pioneers in Reproductive Biology, both of whom were knighted by the 
Queen of England, Drs. Richard Gardner and Robert Edwards. The 
eloquent, fascinating and in-depth history behind Dr. Edwards interests 
in cytogenetics, prior to IVF, has been reviewed in his life’s story [2]. 
The story also alludes to a formidable team of young scientists emerging 
in the UK in the 1960’s and 1970’s (in association with Cambridge 
University, Oxford University, the Marshall Laboratory and the Medical 
Research Council) who shaped the future of Reproductive Genetics, 
Immunology and Physiology, as we know it today. Many of the latter 
scientists (e.g., R Yanagamachi, MH Johnson, A Handyside, R Gosden, 
J Rossant, G Papaioannou, A Surani, D Whittingham, A Trounson, S 
Willadsen and others) made pioneering discoveries and contributions 
to the fields of Embryology, Genetics and Reproductive Medicine, 
which will not be discussed in this review. By the 1980’s, an alternative 
to karyotyping was identified by detecting the histocompatibility 
antigen of the Y chromosome of murine embryos (H-Y antigen) 

[3,4] and applied to embryo sexing in animal agriculture [5-7]. It is 
noteworthy to mention that Dr. Ken White’s doctoral research was 
presented at the 1982 International Embryo Transfer Society meeting 
and was the recipient of the first inaugural Student research award 
[8]. Ultimately, the emphasis on genetic determination led to the 
development of preimplantation diagnosis (PGD) in the mouse model 
[9,10]. In conjunction with the specific polymerase chain reaction 
(PCR) testing for X and Y chromosomes [11-13], simultaneous efforts 
to improve the efficacy of single cell biopsying [14] facilitated human 
PGD development [15,16]. In reviewing the history of PGD between 
1990-2010, Handyside [17] eludes to early errors in sex determination 
by PCR, prior to nested PCR, and the importance of utilizing multi-
colored fluorescence in situ hybridization (FISH) to more reliably 
identify X and Y chromosomes. The technology of “chromosome 
painting” was adapted to embryos by Santiago Munne et al. [18], and 
extended to include up to 12 different probes and sequential analyses 
of fixed nuclei to facilitate preimplantation genetic screening (PGS) 
for aneuploidy determination [19]. Improvements in euploidy and 
translocation diagnostic capabilities progressed from FISH to array 
comparative genomic hybridization (aCGH), allowing 24 chromosome 
types to be clinically evaluated [20,21]. In turn, aCGH reduced 
the error rate and diagnostic limitations of FISH resulting in lower 
spontaneous abortions and fewer implantation failures [22]. Next 
generation sequencing (NGS) [23-26] has further enhanced the speed 
and precision of aneuploidy testing, through massive parallel genome 
sequencing [27,28]. The history of PGS/PGD technologies in assisted 
reproductive technologies is still being created as dynamic growth is 
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Abstract 
The concept of assisted reproductive technologies was most notably derived from the late 19th Century 

experiments of Sir Walter Heape who successfully transplanted rabbit embryos. Interestingly, it was not until the late 
1940’s and 1950’s that renewed interests in rabbit embryo transfer and cryobiology occurred. The history behind 
developing effective procedures can be fascinating, though few could be more accidental than Dr. Chris Polge’s 
discovery of glycerol (1948), from a mislabeled bottle of sugar solutions, being an effective cryoprotective agent 
for sperm freezing. The purpose of this review paper is to discuss four key scientific breakthrough technologies 
occurring between 1985 and 1995, which ultimately shaped the future of today’s human in vitro fertilization (IVF) 
industry. More importantly, this paper highlights the foundation of underlying related discoveries and some unique 
stories involving their development and publication. In the end, this paper emphasizes the value of understanding 
scientific discovery timetables and the eventual re-discovery in the hands and minds of creative, determined and 
dedicated scientists, as history tends to repeat itself before its useful application is realized.

http://dx.doi.org/10.4172/2375-4508.1000148
http://dx.doi.org/10.4172/2375-4508.1000148
http://dx.doi.org/10.4172/jfiv.1000115


Page 2 of 7

Volume 4 • Issue 2 • 1000173JFIV Reprod Med Genet
ISSN: 2375-4508 JFIV, an open access journal

Citation: Schiewe MC (2016) The Historic Development and Incorporation of Four Assisted Reproductive Technologies Shaping Today’s IVF Industry. 
JFIV Reprod Med Genet 4: 173. doi:10.4172/2375-4508.1000173

ongoing. Meanwhile, the full impact of today’s PGS capabilities would 
be impossible without the advent of vitrification as a highly efficient 
cryopreservation procedure. Together, the transfer of vitrified-warmed 
single human euploid blastocysts is capable of achieving >70% 
implantation rates, independent of age [29].

Vitrification
Behind the cryobiological principle and potential advantages of 

freezing without potentially damaging ice formation (i.e., forming a 
metastable glass state), neither Drs. Greg Fahy nor William F. Rall could 
have foreseen the tremendous effectiveness that vitrification would have 
on maintaining the cryo-viability of oocytes and embryos. Dr. Fahy’s 
dreams were, and still are, fixated on the much bigger challenge of 
whole tissue/organ preservation [30,31]. All the while, Dr. Rall wanted 
to simplify conventional embryo cryopreservation procedures for on-
farm use, and possible in-field conservation efforts, without a need for 
electronic equipment [32]. However, it was an extremely competitive 
time among scientists, as new breakthrough technologies were rapidly 
developing. Bill Rall conducted a series of clandestine experiments in 
a walk-in cold room at the American Red Cross Blood Research Lab 
(Bethesda, MD) [33]. These experiments were secretively performed 
with the support of the Scientific Director, Dr. Harold Merryman, 
knowing that fellow scientist, Dr. Tsuneo Takahashi, was conducting 
vitrification studies on monocytes [34]. Knowing this, Bill Rall strived 
to publish their mouse embryo vitrification success in Nature as soon as 
possible [35], meanwhile he intentionally delayed a manuscript review 
of the unknowing Dr. Takahashi. Dr. Merryman later regretted the 
support he extended Dr. Rall to keep his project secretive, as evidenced 
by offering his famed scientific memoirs to Dr. Takahashi upon his death. 
The third generation of Dr. Rall’s vitrification solutions (VS3a, a 6.5M 
glycerol solution) was proven safe for use under ambient conditions, 
achieving comparable survival levels and pregnancy outcomes to 
conventional slow freezing of mouse (with trustworthy collaborators in 
England) [36] and sheep blastocysts (mentoring a local PhD candidate) 
[37,38]. Ironically, Dr. Rall delayed the latter published paper in the 
sheep for 3 years, hoping to publish the first vitrified large mammal 
birth in the cow (unpublished data, conducted with Dr. Stanley Leibo.)

Although alternative low toxicity vitrification solutions were first 
reported in 1990 [39], nearly a decade passed before being proposed 
for improved assisted reproductive technologies application on human 
oocytes, cleaved-embryos and blastocysts [40,41]. This interest in 
clinical vitrification was linked to the formation of unique cryo devices 
like the open pulled straw [42,43], cryoloops [44-46] and cryotops 
[47,48], whose thin surrounding film of vitrification solution and direct 
contact with LN2 achieved ultrarapid cooling rates. Furthermore, our 
understanding of vitrification solutions and their potential toxicity were 
enhanced by Drs. Jill Shaw [49,50], Jaffar Ali [51], Miyake Kasai [52] 
and Tetsunori Mukaida [53] and their co-workers. By the mid-2000’s, it 
was the commercial industry, developing new devices and solutions that 
propelled vitrification use into IVF labs, for better or worse. By 2010, 
the benefits of vitrified embryos and oocytes having virtually no change 
from their fresh state was gaining worldwide acceptance. During this 
time, the relative importance of warming rates to insuring successful 
vitrification [54] was proven in a murine experimental model system by 
Drs. Seko Seki and Peter Mazur (“the father of modern cryobiology”). 
These findings supported the effective development and use of aseptic, 
closed vitrification device systems [55-60], proving that open device 
systems were not a requirement for successful outcomes. Yet, the relative 
importance behind the myth of open devices and their ability to achieve 
ultra-rapid cooling rates continues to-date. It is important to realize that 
these highly effective devices require equally rapid warming rates, if 

not more, to optimize survival [61-64]. Thus, open system devices are 
more susceptible to technical variation and user error associated with 
device handling, as well as lacking the secure storage capacity of a closed 
system. In short, a key component to optimizing post-warming survival, 
independent of device used, is to insure the warming rate is greater than 
the cooling rate; of which the need for speed is inversely correlated to the 
concentration of the cryoprotective agent used [62,64]. Although it took 
more than 20 years of development, vitrification has transformed the IVF 
industry, with regards to oocyte cryobanking [65,66] and the justified 
adoption of vitrification-all IVF cycles [67]. As the story continues to 
unfold, in terms of devices and vitrification solutions, today blastocysts 
are vitrified with great confidence that their fresh-state viability will 
be completely sustained. This is particularly true in conjunction with 
blastocyst biopsy/PGS-single embryo transfer applications [68,69] 
where over 99% survival can be typically achieved [29].

Lasers in Assisted Reproductive Technologies
Sustaining the complete cryosurvival of blastocysts was dramatically 

improved by blastocoele collapasing tatics for cryopreserved embryos. 
As with assisted hatching procedures in the 21st Century, blastocyst 
collapsing was easily and safely achieved using a non-contact, infrared 
(IR) laser device [70]. The incorporation of laser zona and cellular 
ablation has also greatly simplified and improved the efficiency of 
trophectoderm biopsying procedures [71,72]. But how did laser 
technology get implemented into Reproductive Medicine? Following 
early gynecological surgery applications [73], lasers were thrust into 
the biomedical field in the mid 1980’s, in conjunction with a surge of 
US-federal funding for “Star Wars” research. One example of the early 
advanced technology was the development of the Meridian fluorescence 
microscopic workstation with its computer automated programmable 
stage and built-in Excimer ultra-violet (UV) laser, allowing for the 
preselection of cells to ablate (Figure 1). Laser beams were effectively 
used to selectively destroy cells [74], dissect the zona pellucida [75,76] 
and even created force fields capable of moving chromosomes [77] and 
sperm [78]. However, most of these early efforts proved impractical 
and/or incorporated the use of strong UV wavelengths [74,76], which 
were potentially damaging to the genetic integrity of cells. Feichtinger 
exhibited the effectiveness and safety of a longer wavelength laser (2100 
nm; [75,79]), however it required an optical fiber-touch procedure 
which did not simplify matters in contrast to assisted hatching using a 
micropipette and acidic Tyrode’s solution [80-83]. 

It was the simultaneous development of non-contact IR laser 
systems in the mid-1990’s in Europe (1084 nm: [84,85]) and the USA 
(2100 nm: [86,87]) that allowed the technology to progress safely into 
the assisted reproductive technologies field. The holmium:yttrium 
scandium gallium garnet (Ho:YSGG) laser system devised by Dr. Yossi 
Neev was effective (Figure 2) but involved a large box device requiring 
extensive mirror calibrations. Meanwhile, the compact nature and 
simplicity of the diode laser (1084 nm) developed by Swiss researchers, 
made the Ho:YSGG efforts practically obsolete upon publication. 
Cell Robotics (Albuquerque, NM) initially integrated the diode laser 
into a microscope workstation, and conducted FDA trials in the late 
1990’s. Although no more effective than assisted hatching with acidic 
Tyrode’s solution, it was apparent that its greatest impact would be 
aiding embryo biopsy procedures [88,89]. Both the simplicity and 
efficacy was improved by eliminating the need for a dual microtool 
micromanipulation approach. The technology was acquired by 
Hamiliton-Throne (USA) and Research Instruments (Europe), whom 
developed the incredibly useful computerized devices used today, in 
conjunction with daily embryo evaluations and micromanipulation 
procedures with the simple “energized” touch of a bottom. 
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Page 3 of 7

Volume 4 • Issue 2 • 1000173JFIV Reprod Med Genet
ISSN: 2375-4508 JFIV, an open access journal

Citation: Schiewe MC (2016) The Historic Development and Incorporation of Four Assisted Reproductive Technologies Shaping Today’s IVF Industry. 
JFIV Reprod Med Genet 4: 173. doi:10.4172/2375-4508.1000173

Today, in addition to routine assisted hatching and selective 
cell ablation applications, zona dissection may be used to assist 
intracytoplasmic sperm injection (ICSI) efforts [90], potentially 
reducing oocyte trauma associated with attempted penetration of a 

non-compliant hardened zona pellucida or caused by using dull, poor 
quality injection pipettes. More recently, an IR laser has been used to 
significantly elevate the warming rate of a vitrified sample (107 °C/min; 
[91]), an application which is much more likely to have an important 

 
Figure 1:  The use of a Meredian laser microscope workstation, at the Uniformed Services University of the Health Sciences (Betheda, MD), was proven to be effective 
in a 1988 pilot study aimed to selectively destroy the inner cell mass of mouse blastocysts (Schiewe, unpublished).  The red circle denotes the region where laser 
pulses were serially directed (A) and where partial (B) or complete (C) cellular destruction occurred.

Figure 2:  Full blastocoele expansion was unnecessary to initiate hatching in Ho:YSGG laser treated mouse blastocysts [81,82], thus no thinning of the zona occurred.  
The use of non-contact laser zona dissection (LZD) proved effective without any loss in embryo viability.  LZD facilitated the premature herniation and complete 
hatching of the blastocyst, which has proven useful for integrating blastocyst biopsy into clinical practice. 
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applied impact. Overall, the ease of laser use has greatly simplified 
and improved the efficacy of many assisted reproductive technology 
procedures.

Intracytoplasmic Sperm Injection
Inarguably, the most revolutionizing assisted reproductive 

technologies procedure used in Human IVF was the development of 
ICSI. Most individuals are familiar with the breakthrough efforts of an 
Italian Physician, Dr. Gianpiero Palermo, experimenting with sperm 
injection at the Universitair Ziekenhuis fertility clinic in Brussels, 
Belgium, where the first human birth was reported in 1992 [92,93]. Like 
other scientists of his day, he initiated his Reproductive career in male 
infertility studies with sub-zonal insemination [94] in the mouse model 
[95] as well as working with discarded immature human oocytes. In 
late 1991, the latter preliminary investigations yielded unexpected 
outcomes. Applying an unconventional direct 3 o’clock sub-zonal 
insemination injection approach, not surprisingly (i.e., in hindsight) 
Dr. Palermo punctured directly into the egg at times, injecting a single 
sperm into the egg cytoplasm and not the perivitelline space. The 
efficacy of the resulting subsequent pronuclear formations was often 
better than the sub-zonal insemination outcomes, which gave him the 
foresight and courage to shift his procedural emphasis. 

The rest was history [92], unlike the earlier efforts by Lanzendrof 
and coworkers at the Jones Institute in Norfolk, VA [96], whom 
performed a preclinical sperm injection study with notable fertilization, 
but their corresponding unsatisfactory cleavage development, tainted 
their perspective, as they chose to not implement ICSI clinically. Those 
efforts followed the successful use of sperm injection in the rabbit 
model [97]. Indeed, it was these Japanese investigators who pioneered 
the useful application of sperm injection more than a decade after the 
injection of a human sperm into a hamster oocyte was proven capable 
of experiencing decondensation of the sperm head (i.e., pronuclear 
formation; [98]). Where progress with ICSI really stumbled, was in 
the early failed efforts by Clem Markert [99] using a murine model 
system. Years of efforts and a dismal lack of in vitro success, led to 
a discontinuation of his and others experimental efforts.  Ironically, 
it was later proven by Huang, Kimura and Yanagimachi [100] that 
ICSI using mouse oocytes simply required the mechanical assistance 
of a piezo-injector system to efficiently and routinely achieve high 
fertilization rates. 

By that point, the application of ICSI in human IVF had attained 
worldwide acceptance for the treatment of male factor infertility, 
based predominantly on the concerted efforts by a dedicated team 
of Embryologists under the direction of Dr. Andre Van Steirteghem 
(Joris, Liu, Nagy, Crabbé, Verheyen and others). The mystic to their 
success was unheralded, as international visitors repeatedly attended 
ICSI Workshops conducted by the Brussels group (between 1993-95). 
It is worth mentioning that another European scientist experimenting 
with sub-zonal insemination post-1990, Dr. Michael Tucker, was also 
dabbling with the concept of direct egg injection (DEI) based on Susan 
Lanzendrof ’s early work. Fertilization success was achieved, although 
its efficacy at that time was no better than sub-zonal insemination, 
especially when they factored in elevated degeneration rates (associated 
with the use of 10 μm OD injection pipettes) and difficulties in isolating/
injecting single sperm in the absence of PVP use. Although his early 
success with DEI at the Reproductive Biology Associates in Atlanta, 
Georgia involved mixed transfers and was unpublished, it is humorous 
to note that in some presentations Dr. Tucker hybridized the name of 
his procedure with ICSI (i.e., never a big fan of the acronym) to jokingly 
coin the acronym “DICSI”, for his association with southern American 

living [101]. On another occassion, Dr. Tucker attempted to publish 
the term Sperm Head Injection Technique (i.e., SHIT) which aroused 
a good laugh by the editor of Human Reproduction, Dr. Bob Edwards, 
but it never made it into press [102]. “ICSI” it was, as still other early 
clinical efforts independently proved their injection procedures were 
efficacious for severe male factor sperm [103,104], and that alternative 
microinjection approaches and microtool-manufacturing equipment 
could be effectively used [101,105]. 

In conjunction with early oocyte cryopreservation efforts, ICSI 
proved to be vital to achieve reliable post-thaw fertilization rates 
[106,107]. In the Gook et al. [106] study, embryo transfers were not 
attempted but it is noteworthy that 43% of the ICSI-derived zygotes 
formed blastocysts, following slow freezing in 1.5 M propanediol. 
Based on Dr. Debra Gook’s success, the evolution of oocyte freezing 
was rekindled with live births reported in the USA [108], and in Italy 
[109] where she had scientifically consulted in 1996. By the end of the 
20th Century, nearly every IVF Lab in the world possessed the capacity 
to perform ICSI and resolve most male factor infertility issues. Despite 
fears associated with epigenetic factors and potential genetic anomalies, 
today ICSI use is widespread. In fact, because of its high reliability and 
rare, unexplained cycle fertilization failures, many programs have 
routinely adopted it as the preferred fertilization method, replacing 
conventional IVF.

Summary
The decade between 1985 to 1995 marked the most productive 

and creative period of technological advancement in mammalian 
embryology, as it pertains to todays’ human IVF industry. The 
development of ICSI, laser manipulations, vitrification and 
preimplantation genetic testing established a solid foundation for the 
efficient and effective treatment of human infertility. The stories told 
reveal some unique insights into historic developments which took 
decades to be fully appreciated. Like much of science, there seems to 
always be another layer of detail to be learned. The same is true with 
historical events in science. For example, there was decades of scientific 
discovery and development in invertebrate species and other living 
cells, concurrent or prior to the mammalian models discussed above. 
What they all had in common was the creative vision, determination 
and dedicated efforts of scientists with a passion to ask questions, take 
chances and learn through experimentation.
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