
The Gastric Cancer Stem Cells and Resistance for Chemotherapy Therapy

Masakazu Yashiro1,2*

1RAK Medical and Health Science University and Masafi Hospital, UAE

2London University, UK and Masafi Hospital, UAE

3Critical Care Department Alzahra Hospital, Sharjah, UAE and Alexandria University Hospital, Egypt

4School of Forensic and Applied Biology, University of Central Lancashire, Preston, UK.

5Faculty of Medicine , Zagazig University, Egypt

6Internal medicine Department , Masafi Hospital , UAE

7Internal Medicine Department , Faculty of Medicine, PJ Safaric University, Kosice, Slovakia,

8Cardiovascular Departments at Tanta University, Egypt- and Al-Elaj Medical Center, Ajman, UAE

ABSTRACT
Gastric cancer remains a major global health threat, and most patients with advanced stage disease require

chemotherapy. Resistance to therapy is a major obstacle in the management of gastric cancer, which may be due to

cancer stem cells that are defined as “cancer cells within a tumor that possess the capacity for self-renewal and that

can cause the heterogeneous lineage of cancer cells that constitute the tumor.” Gastric cancer stem cells exhibit

characteristic biomarkers, signaling pathways, and crosstalk networks with tumor microenvironment. Targeting of

these characteristics, which play important roles in cancer stem cells resistance, may provide new therapeutic

modalities for gastric cancer.

Keywords: Cancer stem cell; Gastric cancer; Side population; Stem cell marker; Chemoresistance;

Microenvironment; Molecular target.

INTRODUCTION
Normal stem cells possess two unique characteristics: self-renewal
potency, which supplies an adequate number of cells to maintain
the organ’s function, and pluripotency, which allows mature
cells to comprise a specific organ [1]. It has recently been
demonstrated that cancer originates from a small subpopulation
of cells known as cancer stem cells (CSCs) that possess the
abilities of self-renewal and tumorigenesis [2,3]. CSCs retain the
capacity to produce a hierarchy of phenotypically diverse progeny
[4]. This theory was first proposed by Furth and Kahn [5] in
1937, and CSCs were first identified and isolated by Bonnet and
Dick [6] in 1997. In 2006, the American Association for Cancer
Research workshop created a consensus definition of CSC as

“cells within a tumor that possess the capacity for self-renewal
and that can cause the heterogeneous lineage of cancer cells that
constitute the tumor” [7]. Recent accumulating data support the
hypothesis that CSCs may exist in several solid tumors,
including gastric cancer (GC) [8]. In addition to their self-
renewal capacity, CSCs have the potential to metastasize and
recurrence [4,9]. Various biomarkers and signaling have been
utilized to detect and characterize CSCs, including those in
human GC [8,10-12]. CSCs have been demonstrated to be
preferentially spared by traditional cancer therapies because
standard chemotherapy and radiation therapy target the
differentiated tumor cell bulk, which results in cancer recurrence
[12,13]. The identification of the CSC component of a tumor
may open a new therapeutic perspective on the basis of selective
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targeting of this small population of cells. In this chapter, the
characteristic properties of gastric cancer stem cells (GCSCs) are
reviewed with regard to surface markers and self-renewal
signaling.

Gastric Cancer and Gastric Cancer Stem
Cells
Gastric cancer remains one of the most common cancers
worldwide and represents a major global health threat.
Traditionally, the clonal evolution model has been used to
explain GC growth: GC cells result from multiple mutations
over time resulting in a population of continually diversifying
cells. In contrast, the CSC theory suggests that only CSCs can
self-renew and promote tumor growth [14]. Because gastric
carcinoma manifests a histological heterogeneity [15],
multipotent CSCs may explain this heterogeneity evident in
gastric tumors [16]. Although investigation of the origin of
GCSCs is ongoing, numerous recent studies suggest that gastric
stem or progenitor cells or bone marrow-derived cells (BMDCs)
are candidates for GCSC [17-19]. Houghton et al. reported that
BMDCs migrate to and repopulate the gastric mucosa during
infections, and over time, contribute to metaplasia, dysplasia,
and gastric carcinogenesis [17]. A recent study by Varon et al.
provided compelling evidence that long-term Helicobacter pylori
infection induces the recruitment and accumulation of BMDCs
in the gastric epithelial mucosa, which then participate in
dysplasia and GC development [20].

Although most patients with advanced stage GC require
chemotherapy, the development of chemoresistance is a major
obstacle in therapy. Because the survival of CSCs is better than
that of proliferating progenitor cells or differentiated tumor cells
on the administration of intensive anticancer therapies [21], it
may be important to understand CSC drug resistance
mechanisms in the development of a promising therapy aimed
at reducing chemoresistance. Several signals are known to be
associated with the stemness of GCSCs and targeting their
cellular pathways, which may play important roles in CSC
resistance, may provide new therapeutic modalities for advanced
stage GC [22-26].

GCSC Markers
Several candidate GCSC cell surface markers have been
reported [8,10-12]. CD44 is a class I transmembrane
glycoprotein that acts as a receptor for extracellular matrices
such as hyaluronic acid, and it is a known downstream target of
the Wnt/β-catenin pathway [27]. CD44 is associated with cell
signaling, migration, and homing and is expressed in lower
glandular cells of the gastric antrum. It has multiple isoforms,
including CD44H that exhibits high affinity for hyaluronate,

and CD44 splice variants (CD44v) that exhibit metastatic
properties. In recent years, CD44 expression correlating with
CSC-like characteristics has been used to identify CSC
populations in several tumor types, including GC. Chen et al.
demonstrated, for the first time, the existence of CD44+ cells
within GC tumors that are endowed with stem cell properties
and also provided a plausible explanation for the

chemoresistance that is frequently observed in patients with GC
[28]. Moreover, Takaishi et al. reported that CD44+ cells have a
sphere-forming ability and serially reproduce morphologically
and phenotypically heterogeneous diseases of the original GC
tissues, thereby demonstrating CD44 to be a potential
biomarker of GCSCs [27]. Furthermore, Nishii et al. reported
side population (SP) cells with CD44 expression exhibiting high
potential for peritoneal metastasis and suggested that CD44 is
associated with GCSCs [9]. In addition, Han et al. proved that
as few as 500 FACS-sorted epithelial cell adhesion molecule
(EpCAM)+/CD44+ cells from human GC tissues are capable of
forming xenograft tumors in immunodeficient mice and
proposed EpCAM and CD44 as putative GCSC markers[29].
Chen et al. reported that GCSCs isolated from human tumor
tissues and peripheral blood carried CD44 and CD54 surface
markers [28]. Ishimoto et al. recently reported that GCSC-like
cells expressing CD44v revealed an enhanced capacity for
reduced glutathione (GSH) synthesis and defense against
reactive oxygen species (ROS) [30]. On the other hand, Rocco et
al. reported that CD44+ and CD133+ cells neither expressed
stem-like properties nor exhibited tumor-initiating properties
[31].

CD90 is a glycosylphosphatidylinositol glycoprotein anchored in
the plasma membrane and is involved in signal transduction; in
addition, it may mediate adhesion between thymocytes and
thymicstroma. Jiang et al. identified a CSC population in gastric
primary tumors, characterized by their CD90 phenotype, and in
a cell population with the CD90 phenotype enriched in sphere-
cultured cells from human gastric primary tumors, suggesting
CD90 as a potential GCSC marker [32]. Notably, CD90+ cells
have self-renewal properties and the ability to establish a tumor
hierarchy from single-cell implantation; furthermore, CD90
expression closely correlates with the in vivo tumorigenicity of
gastric primary tumor models.

CD24 is a glycoprotein expressed at the surface of most B
lymphocytes and differentiating neuroblasts. Zhang et al.
suggested that the CD44+CD24+ subpopulation of human GC
cell lines AGS is composed of GCSCs [33].

CD71 (transferrin receptor) mediates the uptake of transferrin–
iron complexes and is highly expressed on the surface of the
cells of the erythroid lineage. Ohkuma et al. reported that the
CD71− cell fraction was present in both the G1/G0 cell cycle
phase and the invasive fronts of cancer foci, indicating high
tumorigenicity, multipotency, and invasiveness [34]; they
suggested that CD71− is useful in detecting CSCs in human
gastric adenosquamous carcinoma.

CD133, a pentaspan transmembrane glycoprotein, was initially
considered to be a marker of hematopoietic stem cells. Smith et
al. recently demonstrated that a moderate to high percentage of
GC samples have CD133 expression with moderate to strong
membranous and apical expression [35]. Although CD133 is
closely associated with CSCs in various tumors, its significance
in GCSCs remains unclear [31].

ALDH1 (aldehyde dehydrogenase 1) is a ubiquitous aldehyde
dehydrogenase family of enzymes that catalyzes the oxidation of
aromatic aldehydes to carboxyl acids. Katsuno et al. identified
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ALDH1 as an additional marker of GCSCs [36]; ALDH1+ cells
from a human GC cell line revealed higher tumorigenic
potential in vitro and in vivo compared with that of ALDH1−
cells and were capable of self-renewal and generating
heterogeneous cell populations. Moreover, transforming growth
factor-β (TGFβ) therapy reduced the number of ALDH1+ cells
and their tumorigenicity via ALDH1 downregulation and
regeneration of the expression of islet-derived family member 4
(REG4) [36].

Lgr5 (leucine-rich repeat-containing G protein-coupled
receptor5) was identified as a novel stem cell marker of the
gastrointestinal tract, including the gastric gland fundus [37-39].
CD44+, ALDH1+, and CD133+ cells coexisted with Lgr5+ cells
in the stem cell zone of adjacent normal gastric mucosa and
were also detectable in GC [38]. Barker et al. demonstrated that
Lgr5+ cells at the base, rather than the isthmus, of gastric glands
in adult transgenic mice continuously gave rise to all antral unit
cells under normal homeostatic conditions [39]. Simon et al.
reported that an increase in LGR5+ putative stem cells during
gastric tumorigenesis may play a role in the development and
progression of GC [40].

SP, identified and isolated by the ability to efflux Hoechst 33342
dye, is known as a CSC-rich population [9,41-43]. GC cell lines
were found to contain 0.02%–2.2% SP cells [41,44]. Nishii et al.
isolated SP cells by using GC cell lines OCUM-2M, OCUM-2D,
and OCUM-2MD3 [9]; they confirmed that serially sorted SP
subsets from GC cell lines exhibited higher engrafted tumor
formation and possessed a higher potential for peritoneal
metastasis with upregulated expression levels of the adhesion
molecules α2-, α5-, β3-, and β5- integrins and CD44 compared
with those of the non-SP subsets. Moreover, the mRNA
expression of CSC markers ALDH1, CD44, NANOG, and
OCT3/4 was significantly increased in SP cells, which possess
properties similar to those of stem cells [9]. Furthermore, similar
findings were reported by Fukuda et al., who demonstrated that
SP cells from GC cell lines and human GC tissues are more
tumorigenic and chemoresistant compared with unsorted cells
[41]. These sorted cells remained in an undifferentiated state
and revealed a distinct hierarchy in malignancy. Further
evidence of the link between GCSCs and the SP phenotype was
recently provided in a report by Ehata et al., who demonstrated
that SP cells within human diffuse-type GC cells display greater
tumorigenicity in vivo compared with that in non-SP cells and
produce both SP cells and non-SP cells, indicating the self-
renewal activity and multipotency of stem cell-like characteristics
[45]. Collectively, these observations may offer a novel tool to
identify and isolate GCSCs using SP assay, and provide a new
insight into novel strategies for GC therapy by targeting CSCs in
clinical trials. Schmuck et al. reported that SP cells were smaller
and expressed CD133 and MSI-1, which yielded SP and non-SP
cells in recultivation experiments [43]. In addition, Zhang et al.
reported that SP cells from MKN-45 possess CSC properties and
proved that they were gastric cancer stem-like cells. However, SP
cells from BGC-823 did not possess CSC properties, proving
that not all SP cells contain cancer stem-like cells in GC cell
lines [46]. Moreover, Burkert et al. revealed that SP and non-SP
cells isolated from four GC cell lines did not differ with regard

to the number of stem cell-like cells [47]. Nevertheless, the utility
of SP to identify GCSCs remains controversial [27].

ABC transporters, including ATP-binding cassette subfamily B
member 1 (ABCB1/MDR1) and ATP-binding cassette subfamily
G member 2 (ABCG2), can confer multidrug resistance to
cancer cells. The expression of these transporters is correlated
with the response to therapy and survival [48]. SP cells are
determined by their differential potential to efflux the
fluorescence dye Hoechst 33342 via ABC transporters, which
are associated with SP chemoresistance properties [9,43,49].
Jiang et al. demonstrated the expression of the CSC markers
ABCB1/MDR1 and ABCG2 in human GC tissue samples and
cell lines and concluded that the expression of these markers
varied in GC with various degrees of differentiation [32].

These putative markers may be useful to identify CSCs and
determine the therapeutic molecules. However, many of the
published markers are not absolutely specific to stem cells. In
addition, different types of CSCs may coexist within one tumor
mass. Cancer cells determined by these potential markers may
contain not only stem cells but also progenitor cells. Therefore,
a single surface marker may not be sufficient to identify and
characterize GCSCs, and thus, a combination of these markers
is required.

Gastric Cancer Stem Cells Signaling
The dysregulation of several major signal transduction pathways
may be involved in gastric tumorigenesis and in the self-renewal
of GCSC as stem cell regulators [50]. Sonic hedgehog (Shh)
expression levels are the highest in the stem cell region of the
gastric unit [51]. The Shh signaling pathway is dysregulated in
GC [52,53], and aberrant activation of the Shh pathway
positively correlates with poorly differentiated and aggressive GC
[54]. In addition, Shh signaling promotes the motility and
invasiveness of GC cells through TGFβ- mediated activation of
the ALK5-Smad3 pathway, indicating its potential role in GC
metastasis [55]. The Shh signaling pathway is essential for the
maintenance of cancer stem cell-like cells in GC [56]. Evidence
supporting the role of Shh signaling as a driving force and
intrinsic regulator of GCSCs has been established from several
recent studies of human GC cell lines and cancerous tissue
samples. CD44+/ CD24+ stem-like cells from a GC cell line
revealed upregulated mRNA expression in the Shh signaling
molecules, Patched 1 (PTCH1), and GLI compared with that in
the nontumorigenic CD44−/CD24− subpopulation [33]. The
Shh pathway may provide a rational therapeutic approach to
targeting GCSCs for GC therapy [56,57].

Wnts are secreted glycoproteins that bind to cell surface
receptors to initiate signaling cascades that are a key to the
development and maintenance of gastric epithelia. Wnt/β-
catenin signaling primarily involves balancing the ratios of
stemness, proliferation, and differentiation [58]. Aberrant
activation of Wnt signaling has been shown to regulate the self-
renewal of stem cells and trigger a variety of tumors [59,60],
including GCSCs [61]. Ishimoto et al. reported that a
subpopulation of rare CD44+ stem cell-like slow-cycling cells was
consistently present in the gastric glands at the squamo–
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columnar junction in normal mouse stomach [62]. By the
combined activation of PGE2, Wnt signaling enhances the
expansion of these stem cell-like cells, leading to gastric
tumorigenesis [63]. Moreover, soluble Wnt antagonists play a
negative role in GC growth and contribute to the maintenance
of the stem cell pool in deep gastric glands [64]. The Wnt/β-
catenin signaling pathway may play an important role in
maintaining self-renewal and the undifferentiated state of
GCSCs [61,65].

TGFβ has been reported to maintain the stemness in
glioblastoma [66,67] and leukemia [68]. The TGFβ superfamily
is essential for gut morphogenesis, cellular differentiation, and
adult homeostasis [65,69]. Ehata et al. recently reported that
TGFβ decreased the SP cell numbers within diffuse-type gastric
carcinoma cells [45]. Hasegawa et al. recently demonstrated that
TGFβ signaling significantly increased the expression levels of
CSC markers, ALDH1, CD44, Nanog, and Oct3/4, in GCSCs
[70].

Embryonic stem cell-expressed Ras (ERas) is a recently identified
Ras family oncogene that supports the tumor-like propagation of
ES cells [71]. ERas product is a constitutively active Ras protein
in the absence of mutation [72]. ERas oncogene is expressed in
viviparity phase cells but not in somatic cells because of the
epigenetic regulation of the ERas oncogene in the somatic
phase. Yashiro et al. reported that ERas activation may be
associated with tumorigenesis in gastric carcinoma and may be
one of the molecules responsible for cancer stem cell-like
characteristics. Moreover, Kubota et al. suggest that ERas is
activated in a significant population of GC, where it may play a
crucial role in GC cell survival and metastases to the liver via
downregulation of E-cadherin [73]. In addition, they reported
that ERas induces chemoresistance to CPT-11 via activation of
the phosphatidylinositol-3 kinase-protein kinase β mTOR
pathway and NFκB, consequently leading to ABCG2
upregulation [74].

The Notch pathway has been known to developmental biologists
for decades; its role in the control of stem cell proliferation has
now been demonstrated for several stem cell types including
hematopoietic, neural, and mammary [75]. Notch signaling is
another key pathway in the self-renewal of stem cells, cell fate
determination, and differentiation during developmental and
adult cell homeostasis as well as in tumorigenesis [76-79].
Although notch signaling-mediated stem-like properties in GC
have not yet been fully defined, abnormal activation of Notch
signaling was observed in GC. Approximately 75% of primary
GCs expressed the Notch ligand Jag1, with the expression status
correlating with cancer aggressiveness and patient survival rate
[80].

The stemness factors, Sox2, Oct3/4, Klf4, and Nanog, have
been associated with induced pluripotent stem cells [81,82], and
few studies have suggested that these factors may play a role in
human malignancy [83]. Yupeng et al. reported that Sox2 may
promote cell proliferation and tumorigenesis in breast cancer
[83]. In addition, Oct3/4 expression has been suggested to be
implicated in self-renewal and tumorigenesis via activation of its
downstream genes in cancer stem- like cells of cancer cells
[84,85]. Other studies have reported that Oct4 expression is

associated with the early stage of pancreatic carcinogenesis [86]
and is correlated with lymph node metastasis [87]. In GC,
Matsuoka et al. reported that Sox2 and Oct3/4 are independent
prognostic factors for patients with GC. Further, Tian et al.
reported that Sox2 plays a pivotal role in sustaining stem cell
properties [88]. Liu et al. reported that nonadherent spheroid
body-forming cells from the GC cell line MKN-45, cultured in a
stem cell-conditioned medium, exhibited GCSC characteristics
of sustained self-renewal, high proliferation, chemoresistance,
and high expression of CSC markers such as Oct3/4, Nanog,
Sox2, and CD44, compared with those in the parental cells [89].

GCSC Microenvironment (niche)
Normal stem cells, such as embryonic stem cells and induced
pluripotent stem cells, require niche fibroblasts as feeder cells to
supply the stemness factors. In the stomach, the niche
surrounding stem cells in the isthmus/neck region of mucosa
contributes to the maintenance of these stem cells, the
regulation of cell numbers, and their differentiation [90].
Gastric stem cells are surrounded by a sheet of subepithelial
myofibroblasts that acts as a niche and secretes

different types of growth and differentiation factors [91,92]. It
was recently reported that niche stromal cells play a critical role
in the characteristics of CSCs [1]. There are several components
of the niche that have been suggested to regulate CSC
properties, and these components are involved in tumor growth,
including extracellular matrix, stromal cells, vascular and
endothelial molecules, secreted modifier proteins, growth
factors, bone marrow-derived myofibroblasts, and hypoxia.
Hasegawa T. et al reported that carcinoma-associated fibroblasts
might regulate the stemness of CSCs in gastric cancer by TGFβ
signaling [70]. Bone marrow-derived myofibroblasts were
recently considered as major components of the niche for gastric
carcinogenesis and tumor growth [54,93-95]. Moreover,
carcinoma-associated fibroblasts originating from bone marrow-
derived mesenchymal stem cells create a niche to sustain cancer
progression [96,97].

Guo et al. reported that gastric tumor cells activate the stromal
fibroblasts (SFs) and become myofibroblasts [93]; they suggested
that suppressing the fibroblast activation by inhibiting tumor
cell-derived factors would be an effective strategy for
chemoprevention in GC. Moreover, Shibata et al. demonstrated
that the overexpression of stromal-derived factor 1 (SDF1)/
CXCL12, a ligand for CXCR4 (C-X-C chemokine receptor type
4), induces the GC recruitment of BMDCs and the modulation
of the progenitor niche [97]. Hepatocyte growth factor secreted
by cancer-associated fibroblasts increased the self- renewal of
colon CSCs through activation of the Wnt signaling pathway
[98]. Chronic gastritis can recruit bone marrow-derived
mesenchymal stem cells, and these differentiate into cancer-
associated fibroblasts that sustain cancer progression [11,96].
Moreover, several inflammatory cells, including macrophages,
can affect the self-renewal of CSCs [98,99]. Uehara et al.
demonstrated the relationships between

H. pylori colonization, GC, and DNA damage within Lgr5+
epithelial stem cells in the stomach of patients with GC[100];
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they found that Lgr5+ cells expanded in the presence of H.
pylori in the antrum of patients with GC. In addition, Tsugawa
et al. used CD44v9-expressing GC cell lines to study the
potential of intracellular CagA to avoid autophagy and found a
molecular link between H. pylori-derived CagA and GC stem-
like cells [101]. Chronic inflammation caused by

H. pylori infection plays an important role in transforming
resident stem cells into tumor cells.

Hypoxia is another critical aspect of the CSC niche and is
involved in the maintenance of self-renewal and the
undifferentiated state of the CSC population in various solid
tumors [102,103]. Hypoxic conditions may be implicated in the
stemness of GCSCs, although the underlying mechanisms
remain unknown [104]. Hypoxia-inducible factor (HIF)-1α
down-regulated CD133 expression in cancer cells [105].
Understanding the origin of CSCs and their interaction with
niches would be helpful in precise targeting of CSCs.

Resistance of GCSCs to Cancer Therapy
In addition to conventional cancer therapies such as surgery,
cytotoxic chemotherapy, and radiation, selective therapies on the
basis of cancer biology have become available [106]. The
resistance of CSCs to these therapies may be explained by
various mechanisms, including characteristic properties of CSCs
and their microenvironment, as described above [107].
Conventional chemotherapy and radiation kill differentiated
tumor cells en masse, resulting in tumor size reduction;
however, tumor relapse occurs because of the presence of
residual quiescent CSCs. There is a need to design drugs that
specifically target CSCs, including stem cell-targeting drugs,
stemness inhibitors, and microenvironment-modulating drugs
[108-110]. For targeting GCSCs, several novel strategies have
been suggested, including tumor stem cell differentiation
induction, targeting GCSC cell surface molecules, targeting the
GCSC microenvironment, and inhibiting GCSC self- renewal
pathways.

Chemoresistance of GCSCs
Most patients with GC in the advanced-stage disease require
chemotherapy, and resistance to therapy is a major obstacle in
the management of gastric cancer, One of the critical problems
in cancer therapy is the heterogeneity of cancer cells. Anticancer
therapies are effective against proliferating progenitor cells or
differentiated tumor cells, but quiescent CSCs can survive
chemotherapy and produce progenitor cells or differentiated
tumor cells [21,111]. Therefore, the development of a therapy
against CSC is important in reducing chemoresistance.

CSCs identified as SP cells exhibit chemoresistance related to
the ABC transporter expressed in these cells. Two ABC
transporters have been identified as capable of effluxing
Hoechst 33342 dye and mediating the SP phenotype in both
CSCs and normal cells: ABCB1/ MDR1 and ABCG2 [9].
Overexpression of efflux pumps by ABC transporters may allow
cancer cells that exhibit stem-like properties to escape the
cytotoxic effects of anticancer drugs, compromising
chemotherapeutic outcomes [112-114]. Axitinib, a multitargeted

tyrosine kinase inhibitor against vascular endothelial growth
factor receptor 1 (VEGFR-1), VEGFR-2 and VEGFR-3; platelet
derived growth factor receptor (PDGFR); and c-Kit, targeted
CSCs to enhance efficacy of chemotherapeutic drugs via
inhibiting the drug transport function of ABCG2 [115].
Therefore, selective inhibition of ABC transporters could be
beneficial in combination with chemotherapy, particularly in
the eradication of multidrug-resistant cancer cells [116-118]
(Figure 1).

Tumor cell hierarchy is consistent with a gastric cancer cells
population at the hierarchical apex of cancer stem cells. Gastric
cancer stem cells (GCSCs) have the capacity to self-renew and to
differentiate into various kinds of daughter cells, including
progenitor-type cells and more differentiated tumor cells.
GCSCs reveal the characteristic biomarkers and stemness-
maintaining signaling pathways. In addition, GCSCs reveal
crosstalk networks with stromal cells (such as myofibroblasts),
which may secrete factors that regulate stemness and cancer cell
differentiation in the tumor microenvironment.

CSCs manifest enhanced protection against ROS, rendering
them resistant to chemotherapy or radiotherapy. Ishimoto et al.
revealed a role for CD44v in the protection of CSCs from high
levels of ROS in the tumor microenvironment. CD44v interacts
with and stabilizes xCT, a subunit of a glutamate–cystine
transporter, and thereby promotes cystine uptake for GSH
synthesis. CSCs provide a rationale for CD44v-targeted therapy
to impair ROS defenses and sensitize them to conventional
chemotherapy [30]. Tamada M. et al. suggest that CD44 ablation
enhanced the effect of chemotherapeutic drugs in p53-deficient
or hypoxic cancer cells, and that metabolic modulation by CD44
is a potential therapeutic target for glycolytic cancer cells that
manifest drug resistance [119]. Park et al. discussed a near-
infrared- sensitive molecular imaging probe based on hydrogel
complexes that can target the GCSC marker CD44 [120].

The WNT/β-catenin signaling pathway is required for normal
stem and CSC self-renewal in various cell types [121,122]. In
addition, this pathway can confer chemoresistance to 5-
fluorouracil or doxorubicin in hepatocellular carcinoma [123]
and neuroblastoma [124]. Although the mechanisms by which
the Wnt pathway mediates chemoresistance are not completely
clear, one potential mechanism is through the upregulation of
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ABC transporter pumps. ABCG2 expression and
chemoresistance to both cisplatin and paclitaxel were reversed by
β- catenin siRNA knockdown [125]. Further, the inhibition of
the Shh pathway has been demonstrated to sensitize CSCs in a
variety of tumors, including GC [56].

Jiang et al. administered trastuzumab (humanized anti-ERBB2
antibody) to gastric tumor cells expressing CD90 and found that
this reduced the CD90+ population in tumor size and growth
when combined with traditional chemotherapy [126]. Zhi et al.
reported the following with regard to the properties of ALDH-
high cancer cells when compared with those of ALDH-low
cancer cells: ALDH-high cancer cells exhibited high CSC
properties because they express higher levels of Sox2, Nanog,
and Nestin; they express more floating spheroid bodies and
more colony formation; and they exhibit more resistance to
traditional chemotherapeutic drugs such as 5-fluorouracil and
cisplatin. The Notch signaling pathway has been identified to
play an important role in numerous processes during tumor
progression and metastases and self-renewal of CSCs [127-129].
Recent evidence suggests that Notch may also contribute to
chemoresistance in CSCs through the maintenance of MDR1-
expressing CSCs [130]. Nishikawa et al. suggested that ALDH
generates chemoresistance in GC cells through Notch1 and Shh
signaling [131]. ALDH inhibitors [132] might be promising for
CSC targeted therapy. Liu et al. reported that inhibition of
Notch1 with shRNA could decrease ABCC1 expression, and
improve chemosensitivity in prostate CSCs. Notch1 signaling
could transactivate ABCC1, resulting in higher chemoresistance
ability of prostate CSCs [133]. Akagi et al. reported the role of
myeloid cell leukemia-1 in the apoptosis resistance in CSC-like
populations in GC [134]. Zhan et al. demonstrated that the
orphan receptor TR3, a regulator of cell proliferation and
apoptosis, is increased in gastric tumorsphere cells and suggested
that TR3 is essential for CSC maintenance in human GC cells;
therefore, TR3 could be used as a new therapeutic target for GC
[135]. Xi et al reported that Lgr5 is associated with
chemotherapy resistance in GC, and the inhibition of Lgr5
expression with small interfering RNA increased the sensitivity
of GC cells to chemotherapy [136]. Although the
abovementioned strategies would be helpful in developing anti-
CSC drugs to cure GC, not all pathways/markers may be active
in each CSC the in tumor tissues. Therefore, early diagnosis and
multiple-target therapy are crucial in the CSC-based therapy of
GC and other types of cancer.

Radioresistance of GCSCs
The National Comprehensive Cancer Network (NCCN)
guideline on GC therapy includes radiotherapy as a standard
therapy for patients at the advanced stage. Radiobiological
research over the past decades has provided evidence that both
content and intrinsic radiosensitivity of CSCs vary between
tumors, thereby affecting their radiocurability. Moreover, the
application of cell surface markers to discriminate CSCs and
nonstem cells is expected to allow more direct investigations of
CSC radioresistance. In glioblastoma, the CD133- high cell
fraction was found to have decreased sensitivity to radiation-
induced apoptosis [137]. Furthermore, the overexpression of the

Wnt- catenin pathway was demonstrated to enhance the
radioresistance of mammary progenitor cells using breast cancer
cell lines [138].

Microenvironmental factors may also lead to radioresistance of
cancer cells. A majority of experimental and human tumors
contain hypoxic cells, and hypoxic tumor cells are more
radioresistant than well-oxygenated cells [139], which is
supported by experimental and clinical studies demonstrating
that this protection may be reduced by hypoxic cell sensitizers or
oxygen-enriched breathing gases [140]. Hypoxia can affect stem
cell generation and maintenance in tumors through the
expression of OCT4 [141] and Myc activity [142] induced by
HIF. In addition, both acute and chronic hypoxia increase the
radioresistance of GC cells by cell cycle arrest, and
reoxygenation decreases the radioresistance of hypoxic cells
[139].

New Targets for GCSCs
Targeting the characteristic signaling pathways of CSCs may
represent a promising strategy for GC therapy [12]. Since
chemotherapy is not able to kill quiescent CSCs, it might be
useful to develop a novel drug that can differentiate quiescent
CSC into active cells. Inhibitors of signaling pathways that are
most likely employed in the maintenance of the self-renewal
capacity and the perpetual proliferation of CSCs have emerged
as an important novel class of therapeutic agents
Gastrointestinal tumors have been linked to Hh expression, and
inhibition of Hh signaling by Hh antagonists such as
cyclopamine and robotnikinin may be effective in the
management and prevention of such cancers [143,144]. Yan et
al. indicated that GCSCs play an important role in tumor
angiogenesis and that Notch-1 is one of the mediators involved
in these processes. β-Elemene was effective at attenuating
angiogenesis by targeting GCSCs, and attenuated tumor
angiogenesis by targeting Notch-1 in GCSCs [145,146]. Small
molecules that target both the β-catenin-dependent Wnt
signaling cascade and the anti-Wnt antibodies are awaiting
translation into clinical practice [61,147]. The potency of
salinomycin is based on the suppression of the Wnt/β-catenin
signal transduction, which is associated with the GCSC
signaling. Wang et al. reported a novel Ad5/35-DKK1-based
approach to abrogate the Wnt signaling in CSCs and
demonstrated that the GCSC-targeting gene therapy was
effective in preclinical experiments [148]. In addition, Zhi et al.
reported that ALDH-high cancer cells were highly sensitive to
salinomycin compared with ALDH-low cancer cells [149]. Lee et
al suggested that Wnt/β-catenin signaling maintains self-renewal
and tumorigenicity of cancer stem-like cells by activating
Oct3/4, and proposed the inhibition of Wnt/β-catenin
signaling as a novel therapeutic strategy for targeting cancer
stem-like cells [150]. Nephew et al showed a preclinical
epigenome-targeting evidence that DNA methytransferase
inhibitor, SGI-110, reduced the stem-like properties of ALDH+
cancer cells, including their tumor initiating capacity,
resensitized chemoersistance, and decreased tumor progression
[151]. Zieker et al. suggested that inhibiting the
phosphoglycerate kinase 1 (PGK1), a key metabolic enzyme,

Yashiro M

Chemo Open Access, Vol.9 Iss.6 No:1000e140 6



stimulate stem cell differentiation of CD44+GC cells, which
may represent a promising avenue of research into overcoming
chemoresistance in GC [152].

Several tyrosine kinase signals are known to be associated with
the stemness of CSCs; therefore, targeting their cellular
pathways, which might have important roles in the resistance of
CSCs, may provide new treatment modalities for GC. I have
reported that a c-Met inhibitor SU11274 increases the
chemosensitivity of GCSCs to the irinotecan by decreasing
UGT1A1 which metabolizes irinotecan [9,43,49]. Repression of
c-Kit by p53 is mediated by miR-34 and is associated with
reduced chemoresistance, migration and stemness markers such
as CD44 and Lgr5 [133]. Inhibitors of insulin-like growth
factor-1 receptor and its downstream PI3K/Akt/mTOR pathway
reduced the ALDH+ breast CSCs [153].

It is possible that multiple interactions of the CSC niche
contribute to resistance against conventional therapies.
Therapeutic targeting of CSCs along with their niche appears a
promising approach for future research in combination with
conventional anticancer therapy.

Conclusion: Despite recent aggressive studies of GCSCs, few
specific GCSC markers have been identified, and understanding
of GCSC signaling mechanisms is poor. Also, current studies
suggest that CSC behavior is regulated by the complicated
tumor microenvironment. However, on the basis of these
observations, the CSC theory offers a novel approach via
therapeutic targeting of CSCs, which are assumed to be
responsible for tumor growth, recurrence, and chemoresistance.
CSC-targeted therapy, such as blockading of CSC signaling
pathways, targeting of specific CSC antigens, and controlling
crosstalk between CSCs and their microenvironment may lead
to the development of novel therapeutic strategies for GC in the
future.
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