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Introduction
Ultrasound imaging has long since been used for visualization of

anatomic structures for disease diagnosis and guidance during
therapeutic procedures. Benefits of Ultrasound include a lack of
ionizing radiation and real-time dynamic imaging. It is also the least
expensive, most widely available imaging technology. In gray scale
ultrasonic imaging, the signals which form the image result from
reflection and scattering of soundwaves where there are differences in
the characteristic tissue impedances. Ultrasonography has changed
little since the 1970s. Only basic anatomic information is obtained with
the modality such as: organ length, cortical thickness, collecting system
or ductal dilatation are assessed. Doppler Ultrasound allows
assessment of vascular physiology including blood flow velocity, which
in addition to anatomic images can be used to determine the
hemodynamic physiologic significance of stenosis. Resistive Index
(peak systolic velocity - end diastolic velocity)/peak systolic velocity) a
quantitative measure of blood flow, vascular resistance/compliance, is
commonly used in the diagnosis of renal dysfunction [1].

Contrast Enhanced Ultrasound
Contrast enhanced MRI and CT have been primary cross sectional

imaging modalities. Recently, dynamic contrast enhanced (DCE) MRI
and CT has been utilized to evaluate perfusion/permeability and
vascular physiology [2]. However, this capacity has not been available
for ultrasound. With the introduction of microbubble contrast agents,
diagnostic ultrasound has evolved to allow dynamic detection of tissue
perfusion for assessment of the macro and microvasculature.
Microbubble contrast agents contain gases that are compressible, such
that they expand and contract in the alternating pressure waves of the
ultrasound beam producing echogenic signal, while the surrounding
tissue is relatively incompressible [3]. Contrast enhanced Ultrasound
(CEUS) scanning is continuous, dynamic and in real time.
Furthermore, ultrasound has greater spatial and temporal resolution
when compared to MRI or CT.

Numerous applications of CEUS allow improved anatomic and
physiologic imaging. In echocardiography endocardial border
detection and myocardial perfusion assessment is possible [4].
Unfortunately, ultrasound contrast agents are currently only FDA
approved for use in echocardiography in the USA. In Europe and Asia
CEUS is being developed for a number of applications. CEUS is
particularly well suited for visualization of Neovascularization, seen in
all malignancies and inflammatory processes. For example, ultrasound
imaging of hepatic lesions is significantly improved allowing
evaluation of small lesions that can be indeterminate on CT [5]. This is
because microbubbles linger in the extensive sinusoidal space of
normal liver for several minutes whereas they wash out rapidly from

malignancies. Thus, dynamic enhancement patterns aid in the
diagnosis of these lesions. This real time perfusion imaging is also
being proven to be particularly useful for evaluating anti-
angiogenicbiologic anti-neoplastic therapies [6]. as well as image
guided local-regional therapies such as chemoembolization [7] and
radiofrequency ablation [8] were intra-procedural dynamic imaging of
tumor perfusion can be used to determine the completeness of
therapeutic vascular embolization and tumor destruction [9].
Furthermore, CEUS might allow sensitive and specific evaluation of
abdominal trauma. Injury to the liver, spleen and kidneys can be
assessed rapidly and repeatedly with excellent visualization.
Parenchymal infarcts, ischemia and vascular injury resulting in
dissection, psuedoanuerysm or frank extravasation can be visualized
[10].

CEUS applications in vascular imaging are also extremely
important. The vascular lumen, wall and vasa vasorummicrovascular
perfusion is well evaluated. A particularly useful area of development is
CEUS imaging of the carotid with assessment of the vasa vasorum and
the ectopic vascularization of atherosclerotic plaque (intraplaque
neovascularization). This approach improves identification of
"vulnerable" plaques prone to rupture causing stroke [11,12]. CEUS is
also emerging for evaluation of aortic pathologies and for the detection
of endoleaks following endovascular treatment of abdominal aortic
aneurysms [13]. Furthermore, a real-time CEUS method has recently
been developed to assess the skeletal muscle microcirculation which
could be used to study patients with peripheral arterial disease (PAD)
or diabetic microangiopathy. CEUS techniques can be used to assess
the severity of PAD by measuring muscle flow reserve during either
contractile exercise or pharmacologic vasodilation and thus may
provide a measure of the effects of large- and small-vessel PAD, and the
influence of collateral perfusion. PAD patients have a significantly
longer time to peak contrast concentration. CEUS can also be used in
evaluation of myositis, and diabetic microvascular disease [14].

Elastography
The emerging technology of ultrasonic imaging of soft tissue strain

and elasticity aims at providing information about the mechanical
properties of tissues, stiffness. The relative constituents oft tissue
components; cells, connective tissue, interstitial fluid, and vascular
structures affect elastography. Techniques for imaging strain and
elasticity (i.e. Young's or shear modulus) provide unique information.
The elasticity of a material describes its tendency to resume its original
size and shape after being subjected to a deforming force or stress. The
change in size or shape is known as the strain. The force acting on unit
area is known as the stress. Properties reflecting organ anatomy,
physiology and pathology can be quantified with Elastography [15].
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Elastography is being developed for applications in all aspects of
medical diagnosis. Investigations suggest diagnostic accuracy,
sensitivity and specificity in detection of malignancies of the breast
[16], prostate [17], liver [18], thyroid [19] and pancreas. Furthermore,
Elastography changes during treatment. For example, elastography
changes during radiofrequency ablation reflect areas of resultant tumor
necrosis [20]. Hepatic elastography is being utilized for evaluation of
cirrhosis [21]. Regional ultrasonic myocardial strain and strain rate
measurements have been in clinical use for more than 10 years [22] to
evaluate myocardial ischemia, motion and contractility. Muscle
elastagraphy is being applied to the diagnosis of polymyositis,
dermatomyositis and inclusion body myositis [23] as well as ischemia
and compartment syndrome. Applications in vascular imaging include
assessment of hard, soft and vulnerable plaque as well as vessel wall
thickness and compliance affected in carotid and peripheral vascular
disease.

Molecular Imaging
The development of microbubbles, or other acoustically active

nanoparticles, specific for molecular targets has lead to ultrasound
based molecular imaging. These agents can be targeted to specified
sites by either manipulating the chemical properties of the
microbubble shell or through conjugation of disease/molecule-specific
ligands or antibodies to the microbubble surface. Microbubbles cannot
leave the intravascular space due to their size, therefore only molecular
targets in the vascular compartment can be imaged. Targets related to
Inflammation, angiogenesis and thrombus formation allow for
molecular imaging of atherosclerosis, transplant rejection and tumor-
related angiogenesis and thrombosis [24,25]. Up-regulation of
endothelial adhesion molecule 1 (VCAM-1) and intercellular cell
adhesion molecule 1 (ICAM-1) is detected on endothelium of
atherosclerotic plaques [26]. Selectins are also upregulated in
inflammation [27].

Angiogenesis is a hallmark of tumor growth. Vascular endothelial
growth factor receptor 2 (VEGFR-2) and αvβ3 integrins are
prominently expressed angiogenesis markers. Targeted CEUS allow
specific visualize of tumors and evaluation of response to therapy. αvβ3
integrin, cyclic arginine-glycineaspartic acid (RGD) peptide and
knottin peptides have been targeted with microbubbles [28,29]. Clot
imaging is important for myocardial infarction, deep venous
thrombosis/pulmonary embolism and stroke assessment with
Microbubble targeting to glycoprotein IIb-IIIa receptors and P-selectin
ligand [30].

Ultrasound Backscatter Microscopy (Ultrasound
Biomicroscopy)

Conventional ultrasonic imaging systems typically use frequencies
from 2 to 15 MHz and millimeter spatial resolution. 40-60-MHz
clinical ultrasound systems, with high resolution on the order of 20 to
100 micron, are being developed with applications in ophthalmology,
oncology, intravascular ultrasound, dermatology, and rheumatology.
However, resolution comes at the expense of a shallower depth of
penetrationof about 8-9 mm [31].

“Ultrasound biomicroscopy” allows real time in-vivo visualization
of histologic structures seen with microscopy of resected sectioned
tissue. For example, oral mucosal lesions including hyperplasia,
dysplasia and malignancy are well differentiated with assessment of the
dermis, mucosa, connective tissue, epithelium and microvasculature.

Malignant invasion of the underlying stroma is well visualized [32].
Thus, non-invasive imaging previously requiring biopsy, staining and
microscopy is possible allowing for real time, dynamic and repeated
histologic evaluation.

Conclusion
Ultrasound has lagged behind MRI and CT with respect to

functional/physiologic imaging. Furthermore, the field of molecular
imaging is rapidly expanding. Relatively recent advances in ultrasound
technology are opening the door to real time dynamic physiologic
imaging never before possible. Furthermore, compared to CT and
MRI, ultrasound imaging is more cost effective, widely available
globally and without ionizing radiation.
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