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Introduction

Prenatal diagnosis of fetal aneuploidy, such as Down syndrome
(DS), is usually based on a two-stage model: screening tests directed at
the entire population of pregnant women and invasive diagnostic tests
for the high risk population as determined by the aforesaid screening
tests. Screening tests include different combinations of maternal serum
biochemical markers and various ultrasound markers. Currently, the
most prevalent screening test is the combined first trimester screening
test, which includes ultrasound measurement of nuchal translucency
in combination with maternal serum levels of PAPP-A and free beta-
hCG [1,2]. This approach is gradually replacing second trimester
biochemical screening which is based on maternal serum levels of
AFP, hCG, uE3 (with or without inhibin A). Additional approaches
include various combinations of first- and second-trimester screening
markers, such as the integrated test [3] and contingent screening [4].
Results of these screening tests are reported as risk figures: a patient is
determined to be at high risk for Down syndrome if the calculated risk
exceeds a predetermined cutoff (such as 1: 270 at the time of
screening). Different screening tests have Down syndrome detection
rates ranging from 65% (2nd trimester triple test) to as high as 94%
(fully integrated test). However, this relatively high rate is achieved at a
cost of a 5% False Positive Rate (FPR) and at a relatively low Positive
Predictive Value (PPV) of 2% - 4%. Thus most of the screen positive
patients who ultimately undergo invasive testing are subsequently
found to carry chromosomally normal fetuses.

Diagnostic tests are offered to patients determined to be at high
risk, as determined by such screening tests; family or personal history
of chromosomal anomalies or abnormal ultrasound findings.
Diagnostic tests rely on chromosomal analysis (karyotype) of fetal cells
which must be obtained by an invasive procedure such as Chorionic
Villus Sampling (CVS) or amniocentesis. While diagnostic tests
provide definitive results, they are associated with a slight but
troubling risk of pregnancy loss [5].

Over the last two decades numerous attempts have been made to
find noninvasive techniques for diagnosing fetal aneuploidy. Initial
research focused on the isolation of fetal cells from the maternal blood
[6]. However the isolation of such cells proved to be technically
difficult and inconsistent. In recent years the focus has shifted to cell
free fetal DNA (cfDNA) in maternal circulation.

What is cfDNA? As a result of cell turnover, short (~200 bp)
fragments of cfDNA are released into the bloodstream. During
pregnancy, about 10% of cfDNA is of fetal origin (cffDNA) [7]. Cell
free DNA was first used for non-invasive prenatal diagnosis of fetal sex

using PCR amplification of Y-chromosome specific fragments [8].
Subsequently, cfDNA was used to determine fetal Rhesus (Rh) status
in Rh-negative women and to exclude paternally-derived mutations
[9-11].

Recently cfDNA has been used to detect fetal chromosomal
anomalies, by a technique generally referred to as Non-Invasive
Prenatal Testing (NIPT). Most of these tests are based on sequencing
and quantification of cfDNA in the maternal plasma. Non-invasive
prenatal testing is based on the assumption that when the fetus has a
normal constitution of 46 chromosomes, there is a constant ratio
between the number of fragments derived from each chromosome. In
contrast, when the fetus is affected by a chromosomal numeric
aberration, there is a deviation from the expected ratio. For example, if
the fetus has trisomy 21, more fetal cfDNA fragments from
chromosome 21 are released into the maternal circulation. While the
absolute increase in chromosome 21-derived fragments is quite low,
sequencing and counting of numerous fragments provides statistical
significant results [12,13]. This approach only became feasible with the
introduction of shot-gun or Massive Parallel Sequencing (MPS), which
allows the simultaneous sequencing and counting of millions of
cfDNA fragments [14,15].

NIPT was first offered for trisomy 21 [16], but soon expanded to
include trisomy 18 and 13 and sex chromosome anomalies such as
Turner syndrome (45,X), Klinefelter syndrome (47,XXY), and others
[17-19]. Recently, NIPT has been reported as efficient in the detection
of sub-chromosomal anomalies that are usually detected by
chromosomal microarrays such as Velo-cardio-facial syndrome (VCF)
caused by a microdeletion in chromosome 22q [20]. An alternative to
MPS employs targeted sequencing of only a few chromosomes of
clinical interest. An example of this approach based on quantification
of pre-selected non-polymorphic loci by digital analysis of selected
regions (DANSRTM) [21-25]. Another targeted approach is based on
sequencing of polymorphic loci on chromosomes of interest, which is
then compared with the expected allele distribution based on
maternal, and occasionally parental, genotypes [26,27]. Since such
targeted approaches sequence only specific fragments of interest, the
cost is expected to decrease.

Initial studies evaluated the clinical utility of NIPT in high-risk
patients. Reported sensitivities for detection of trisomy 21 ranged from
98.6% to 100% and specificities from 99.7% to 100% (Table 1). Given
the high sensitivity and the low false positive rates (<0.1% for trisomy
21), these tests are expected to reduce the number of unnecessary
invasive procedures, while maintaining high Positive Predictive Values
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(PPVs). However, as these tests are gradually used by low-risk patients,
the PPV is expected to decrease. Morain et al. (2013) noted that in a
patient population with a Down syndrome prevalence of 1:8, the PPV
is as high as 97.94 %. However, in a low-risk population with a Down
syndrome prevalence of 1:800, the PPV would theoretically drop to
29.42%. In a recent study [28] The PPV was significantly higher for
NIPT compared to standard screening for trisomy 21 (45.5% vs. 4.2%).
Nonetheless, NIPT has not been sufficiently validated in low risk
patients and is still is not recommended by most professional societies
as a primary screening tool for all pregnant women.

Study Test results Sensiti
vity

Specifi
city

 TP FN TN FP Total   

Chiu et al., [15] 86 0 143 3 232 100.0% 97.9%

Ehrlich et al., [17] 39 0 409 1 449 100.0% 99.8%

Palomaki et al., [16] 209 3 1468 3 1683 98.6% 99.8%

Bianchi et al., [18] 89 0 404 0 493 100.0%
100.0
%

Ashoor et al., [21] 50 0 297 0 347 100.0%
100.0
%

Norton et al., [23] 81 0 2887 1 2969 100.0%
100.0
%

Dan et al., [19] 139 0 2819 1 2959 100.0%
100.0
%

Nicolaides et al., [22] 8 0 1939 0 1947 100.0%
100.0
%

Sparks et al., [24] 39 0 252 0 291 100.0%
100.0
%

Sparks et al., [25] 36 0 123 0 159 100.0%
100.0
%

Futch et al., [39] 154 2 5515 1 5672 98.7% 100.0
%

Zimmerman et al., [26] 11 0 126 0 137 100.0% 100.0
%

Nicolaides et al., [31] 25 0 197 0 222 100.0%
100.0
%

Total 894 5 16462 7 17368 99.4%
99.96
%

Table 1: Clinical performance of NIPT in the detection of Down
syndrome

The performance of NIPT for other aneuploidies is lower than that
of trisomy 21. The combined detection rate for trisomy 18 is 97.4%
and for trisomy 13 is only 83.3% [29]. These lower detection rates may
be due to larger chromosome size and higher GC content of
chromosome 13. Another explanation for the decreased sensitivity of
NIPT for trisomies 13 and 18 may be due to the fact that in these cases
there is a smaller placenta resulting in a lower concentration of
cffDNA. As more conditions are tested (such as microdeletions), the
cumulative false positive rates are expected to increase.

In addition to the limitations discussed above, there are a number
of drawbacks that must be addressed before NIPT becomes common
clinical practice:

False negative results: There have been several reports of false
negative results, rates in the range of 0 to 1.4% [30]. This fact must be
conveyed to patients during pretest counseling.

False positive results: These are more common in trisomy 13, 18
and sex chromosome aneuploidy. As more conditions are added to
NIPT, cumulative false positive rates are expected to increase.

Cost: The current cost of NIPT is too high to offer to the entire
pregnant population. However, it is possible that NIPT may be utilized
as a secondary screen for women determined to be at-risk by standard
screening test, using a contingent screening approach [31].

Technical difficulties in using NIPT: In rare instances, the test fails
to provide a result. This is mostly due to a low fraction of fetal DNA in
the maternal plasma and technology used. Test failure occurs in
approximately 0.7-3.8% of tests [32,33]. However, redrawing blood
from the patient will allow a result in the majority of these cases.

Because all NIPTs have potential false positive and false negative
results, they are currently not considered diagnostic, but should be
regarded as highly reliable screening tests. Therefore, abnormal NIPT
results should be followed by invasive diagnostic testing (CVS or
amniocentesis).

NIPT has rapidly been introduced into clinical practice, often with
no regulation or clinical guidelines. To address this issue, consensus
statements and clinical guidelines have been issued by several
international and national professional societies such as the
International Society for Prenatal Diagnosis [34] and the American
College of Obstetrics and Gynecology (The American College of
Obstetricians and Gynecologists Committee on Genetics, 2012) [35]
the National Society of Genetic Counselors [36], and Israeli Society of
Medical Genetics [37]. The use of NIPT in clinical practice should be
an informed patient choice. Pre-test counseling should focus not only
on the benefits but also on the limitations of NIPT. It should be made
clear that NIPT does not replace invasive diagnostic testing. Post-test
counseling is also of great importance. Patients receiving positive
results are recommended to have definite diagnostic testing because of
potential false positive results. Patients receiving negative results
should be counseled regarding the residual risk for a chromosomal
anomaly. In addition, it must be made clear that NIPT does not reduce
the risk for chromosome anomalies that are not included in the test.
Patients manifesting major structural anomalies should not be
reassured given a negative NIPT result but should be referred for
genetic counseling and invasive testing, including chromosomal
microarray analysis [38].

Conclusion
In summary, NIPT has now become a reality. High sensitivity and

specificity already mean that fewer patients will require unnecessary
invasive procedures. If the sensitivity and specificity of NIPT improve
NIPT may ultimately replace invasive procedures. However at this
juncture, these tests are to be regarded as very good screening tests, as
their performance characteristics are superior to other screening
modalities. Commercialization of NIPT has to be taken into
consideration and thus utilization of NIPT should adhere to
professional guidelines.
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