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Abstract
Pulmonary hypertension is a severe disease characterized by small pulmonary artery obstruction from vascular 

proliferation and remodeling leading to elevated mean pulmonary arterial pressure, increased pulmonary vascular 
resistance, right ventricular failure and death. Current treatments include prostacyclin analogs, endothelin receptor 
antagonists and phosphodiesterase type 5 inhibitors, which largely address mechanisms of endothelial dysfunction 
that were identified over 2 decades ago. Despite advances in understanding the disease mechanisms and the 
development of new pharmacological therapies, the prognosis of pulmonary hypertension remains poor. Recent 
advances in stem cell biology have unraveled the potential of stem/progenitor cells to repair damaged organs and 
offer the possibility for cell-based treatment for intractable diseases. This review summarizes the emerging role of 
stem/progenitor cells in the pathophysiology and the treatment of pulmonary hypertension.
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Introduction
Pulmonary hypertension [1] is defined by an increase in pulmonary 

arterial pressure exceeding 25 mmHg at rest [2]. The five categories 
of PH have recently been revised in the Dana Point classification [3]. 
Pulmonary arterial hypertension (PAH) represents a subset of PH 
and is characterized by pulmonary arterial obstruction, increased 
pulmonary vascular resistance, leading to right ventricular failure and 
death.

Despite advances in therapeutic interventions targeting the vascular 
endothelium including prostacyclins, endothelin receptor blockers and 
phosphodiesterase type 5 inhibitors; the mortality and morbidity of 
PAH remain high. Animal models, and increasingly human studies, 
have advanced our understanding about the pathogenesis of PAH 
and enabled the development of novel pharmacological therapies. 
While at present there is no perfect preclinical model that completely 
recapitulates human PAH [4], all models have provided invaluable 
insight into the pathophysiology of PH, including the emerging role of 
stem/progenitor cells. 

Pathophysiology of PAH 
PAH is considered a highly specific vasculopathy that is limited 

to the lung, in particular the pre-capillary arteriolar bed. Histological 
features of PAH include intimal hyperplasia, medial hypertrophy, 
adventitial proliferation/fibrosis, occlusion of small arteries, 
thrombosis in situ, and infiltration of inflammatory/progenitor cells. 
The hallmark plexiform lesions are often found in advanced PAH and 
represent complex “glomeruloid” structures of poorly organized vessels 
surrounded by abnormal and proliferative endothelial-like cells. In 
addition to the abnormalities of the resident cells, increasing evidence 
points to the contribution of migrating cells to the pathogenesis of 
PAH [5]. 

Endothelium 

Endothelial dysfunction is considered to play a major role in the 
pathogenesis of PAH. Disturbed proliferation of endothelial cells 
and altered production of endothelial-derived vasoactive mediators 
lead to structural remodeling of the pulmonary vasculature [6]. 
Angioproliferative “plexiform” lesions, which contribute to lumen 
obliteration, are found in PAH. The current understanding is that 

there is initial apoptosis of endothelial cells followed by disorganized 
proliferation of phenotypically abnormal vascular cells with endothelial 
and myofibroblast characteristics. It has been suggested that endothelial 
progenitor cells or other bone marrow–derived cells migrate, to the 
injured endothelium, [7] although it is unclear whether these serve to 
repair or promote this pathological process as discussed below.

Pulmonary artery smooth muscle cells (PASMCs)

In PAH, there is an increased proliferation of PASMCs. Pericytes 
differentiate into SMCs as a result of muscularization of distal pulmonary 
arteries, further thickening the SMC layer. Neointima is formed by 
recruitment of myofibroblasts with deposition of extracellular matrix 
between endothelium and internal elastic lamina, causing obliteration. 
Furthermore, increased proliferation and migration of SMCs, along 
with the progressive thickening of the proximal intra-acinar and pre-
acinar muscular artery walls, also results in obliteration [8]. Recent 
evidence suggests there are similarities between cancer cells in cancer 
and PASMCs in PAH. PASMCs in experimental and human PAH 
exhibit a cancer-like glycolytic phenotype that drives cells to be resistant 
to apoptosis and amenable to specific therapeutic targeting [9].

Recently described circulating smooth muscle progenitor cells are 
characterized by the expression of markers of mesenchymal/smooth 
muscle lineage markers, such as, endoglin (CD105), α-SM-actin, 
calponin, SM myosin heavy chain, SM22, or platelet-derived growth 
factor receptor-β [10,11]. These cells may contribute to atherosclerotic 
plaque formation by producing extracellular matrix proteins [12]. 
However, their role in PH remains unexplored.
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Adventitia

There is increased production of extracellular matrix in the 
adventitia, including collagen, elastin, fibronectin and tenascin. 
Adventitial fibroblasts also become hyperproliferative and display 
increased sensitivity to serotonin [13]. A population of Mesenchymal 
progenitor cells – cells that are able to differentiate into at least one of 
the mesenchymal lineages – are present in adventitia and can give rise 
to fibroblasts, myofibroblasts and smooth muscle cells in response to 
vascular injury and play a role in vascular remodeling [14,15]. 

Similar to what has been described in pulmonary fibrosis, 
circulating fibrocytes seem to contribute to the pulmonary vascular 
remodeling in PAH [5,16]. Fibrocytes are currently defined as 
bone marrow–derived mesenchymal progenitors that co-express 
hematopoietic stem cell antigens, markers of the monocyte lineage, and 
fibroblast products [17]. These cells contribute to extracellular matrix 
remodeling and can further differentiate into myofibroblasts both in 
vitro and in vivo, under permissive microenvironmental conditions. 
The combination of collagen production and expression of CD45 (or 
one of the hematopoietic or myeloid antigens, such as CD11b, CD13 
or CD34) is considered as sufficient criteria to discriminate fibrocytes 
from leukocytes, dendritic cells, endothelial cells, and tissue resident 
fibroblasts in vivo and in vitro. The resulting cell population produces 
more collagen and fibronectin than the relatively immature fibrocyte. 
Given their contribution to the pathogenesis of PAH, fibrocytes may 
hold promise as biomarkers or therapeutic targets.

These insights into the cellular and molecular basis of PAH have 
led to the development of new agents tackling more than endothelial 
dysfunction and aiming at stopping/reversing the abnormal cell and 
extracellular matrix accumulation. Promising pharmacological options 
include: (i) Rho kinase inhibitors [18]; [14] tyrosine kinase inhibitors 
(platelet-derived growth factor and epidermal growth factor receptor 
inhibitors); (iii) multikinase inhibitors (for tyrosine kinase and 
serine/threonine kinase), (iiv) elastase inhibitors [19]; (v) metabolic 

modulators [20], and (vi) peroxisome proliferator–activated receptors 
activators [21], all of which reverse PH in rodent models and early 
success in human PAH appear in case reports [22].

These observations also highlight the potential role of stem/
progenitor cells in the pathophysiology of PAH. Recent insight into 
stem cell biology has enabled the isolation and characterization of a 
variety of stem/progenitor cells from various organs, including the 
lung. While this field of investigation is still relatively young, exciting 
findings about the role of stem/progenitor cells in respiratory health 
and disease have opened new therapeutic avenues for cell-based 
strategies for PH.

Definition and Types of Stem Cells
Stem cells are cells that have the capacity of self renewal and the 

ability to undergo differentiation into multiple phenotypes [23,24], 
therefore are known to play an important role in organogenesis, 
regeneration and tissue repair and maintenance. Stem cells have 
the capacity to produce one or more lineages. Depending on this 
differentiation potency of stem cells, they can be classified as totipotent 
(differentiate into all cell types e.g. zygote), pluripotent (differentiate 
into cells from all three germ layers), multipotent (capable of producing 
more than one cell lineage) or unipotent (differentiate into one cell 
type). 

Stem cells can also be classified according to their tissue of 
origin [25]: 

Embryonic Stem Cell [26]: They are derived from the blastocyst 
of an embryo from in vitro fertilization. Under appropriate conditions, 
ESCs are pluripotent and can differentiate into specialized somatic cells. 
ESCs have garnered a lot of controversy because of the ethical issues 
regarding the destruction of a human embryo. Some of the ethical and 
technical limitations of ESCs may be overcome by the recent advent of 
induced pluripotent stem cells (see below).

CFU-Hill CAC ECFC
Replating ability - - +
In vitro tube formation +/- +/- +
In vivo de novo vessel formation - - +
Homing to ischemic sites in vivo + + +
Paracrine augmentation of angiogenesis + + +/-
Phagocytosis of bacteria + + -
Clonal proliferative status - - +
Non-specific esterase expression + + -
Phenotypic appearance CD34+/- CD34+/- CD34+

CD133+ CD133+ CD133-

VEGFR2+ VEGFR2+ VEGFR2+

CD45+/- CD45+/- CD45-

CD14+/- CD14+/- CD14-

CD115+ CD115+ CD115-

CD31+ CD31+ CD31+

ALDHbright ALDHbright ALDHbright/lo

acLDL uptake acLDL uptake acLDL uptake
UEA-1 lectin binding UEA-1 lectin binding UEA-1 lectin binding
eNos+ eNos+ eNos+

von Willebrand+ von Willebrand+ von Willebrand+

Properties in bold distinguish cells in ECFC assay from cells in CFU-Hill and CAC assays. The properties credited to an EPC are only fully displayed by ECFC and not CFU-
Hill and CAC. CFU-Hill indicates colony forming unit-Hill; CAC, circulating angiogenic cells; ECFC, endothelial colony forming cells; VEGFR2, vascular endothelial growth 
factor receptor 2; ALDH, aldehyde dehydrogenase; AcLDL, acetylated low density lipoprotein; UEA-1, Ulex europeaus agglutinin-1; eNOS, endothelial nitric oxide synthase

Table 1: Characteristics and cell surface markers of cells comprising the adherent population in the commonly used assays of “EPC” identification (From Hirschi et al. 2008).
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Somatic stem and progenitor cells: These cells can be isolated from 
adult human tissues as well as from cord blood. They are not as potent 
as ESCs and they have increasing degrees of fate restriction. These cells 
include amongst others, mesenchymal stem/stromal cells (MSCs) and 
endothelial progenitor cells (EPCs). The therapeutic potential of these 
cells has already been explored in animal models of PH as well as in 
clinical pilot studies.

Induced pluripotent stem cell (iPS): One of the most 
transformative contributions to the field of stem cell biology in the 
last decade is the engineering of pluripotency into somatic cells by the 
ectopic expression of transcription factors linked to pluripotency. Dr. 
Yamanaka’s group was the first to reprogram mouse [27] and then 
human [28] fibroblasts through retroviral transduction by screening a 
panel of 24 transcription factors that are highly expressed in ES cells. 
This cadre of genes was progressively reduced to four that encode the 
transcription factors octamer 3/4 (Oct4), SRY box–containing gene 2 
(Sox2), Kruppel-like factor 4 (Klf4), and c-Myc. iPS cell pluripotency is 
highly similar to ESCs [29,30]. The ability of mouse iPS cells to generate 
an entire mouse, and of human iPS cells to form teratomas in vivo [31] 
indicates in the most stringent tests that they are pluripotent cells and 
suggests that the defined factor reprogramming approach produces 
cells with a developmental potential similar to that of ES cells. 

One of the numerous advantages of iPS cells over ESCs is the 
ability to engineer patient-specific iPS cells. This should soon be 
harnessed in the field of PH to provide (1) unprecedented insights 
into disease mechanisms and (2) a useful platforms for drug discovery. 
The generation of iPS from patients with known bone morphogenetic 

protein receptor 2 (BMPR2), ALK-1 or endoglin mutations may be the 
first step/good example for iPS technology becoming relevant for PH 
research.

The therapeutic effects of stem/progenitor cells in pulmonary 
hypertension and lung injury in vivo are summarized in table 2.

Endothelial progenitor cells (EPCs): Circulating EPCs in adult 
human peripheral blood were originally identified in 1997 by Asahara 
et al. [32], which challenged the paradigm that vasculogenesis is a 
process restricted to embryonic development. The ability to isolate a 
circulating cell that displays potential to give rise to cells appearing 
endothelial-like in vitro and with the potential to incorporate at sites 
of neoangiogenesis in vivo, spawned a new field of investigation. The 
isolation and further characterization defined the basic and translational 
properties of these presumed bone marrow-derived circulating EPCs 
[33]. Numerous preclinical studies in animal models suggest a high 
probability for successful clinical translation of EPCs as biomarkers, 
or cell therapies to treat ischemic disorders via new vessel formation. 
Hence, there is considerable interest in the potential of these cells to 
promote vasculogenesis and overcome endothelial dysfunction in PH. 

a. Role of EPCs in respiratory health and disease: In 
lipopolysaccharide-induced murine lung injury EPCs (Sca-1+, 
Flk-1+) are rapidly released into the circulation and contribute 
together with other bone marrow-derived progenitor cells 
to lung repair [34]. In elastase-induced emphysema, bone 
marrow-derived cells develop characteristics of endothelial 
cells and contribute to the repair of alveolar capillary wall 
[35,36]. Patients with acute lung injury have 2-fold higher 

MCT =Monocrotaline, RV= Right Ventricle, RVSP= Right Ventricular Systolic Pressure, CO= Cardiac Output, PVR= Pulmonary Vascular Resistance, RVH= Right Ventricular 
Hypertrophy, PAP=Pulmonary Arterial Pressure, IVC=Inferior Vena Cava, IV=Intravenous

Table 2: Stem/Progenitor cells in Pulmonary Hypertension.

Cell Type Source/Route Animal Model Findings Reference
ELPC and eNOS 
transduced ELPCs

Bone marrow /  IV MCT When administered 3 days after MCT induced PAH - 
complete prevention of PAH 
3 weeks after injury – prevented further increase in RVSP
ENOS transduced ELPCs - normalized pulmonary 
hemodynamics and improved survival

Zhao, 2005 – PMID 
15692087

Adrenomedullin gene- 
transduced EPCs

Umbilical cord blood/IV MCT Decrease in PVR and mean PAP, inhibition of increase in 
medial wall thickness

Nagaya, 2003 – PMID 
12835224

EPC Peripheral blood, culture 
media/ injection directly into 
lung parenchyma

MCT EPC transplantation in lungs improved mean PAH, arterial 
pressure, CO, PVR and improved neovascularization

Takahashi, 2004 – 
PMID15265294

CGRP transfected EPCs Peripheral blood/IV Shunt operation – 
abdominal aorta 
to IVC

Decreased PAH and vascular remodeling Zhao Q, 2007 – 
PMID17643632

EPCs Peripheral blood/IV Clinical study Increase in mean distance walked in 6 mins  and 
improvement in mean PAP, PVR and CO

Wang XX, 2007 – 
PMID17418297

Prostacyclin synthase-
MSCs

Bone marrow/IV MCT Improved PH and pulmonary arteriolar remodeling and 
decreased RVH

Takemiya, 2009 – PMID 
19838762

MSC Bone marrow/IV MCT Improved right ventricular function, decreased right 
ventricular peak systolic pressure, pulmonary artery 
narrowing, alveolar septum thickening and RVH

Umar, 2009 – 
PMID19783775

MSC Bone marrow
/Intratracheal

MCT Improved endothelium- dependent responses and 
decreased pulmonary arterial resistance and PVR

Baber, 2006 – PMID 
16980338

MSC Bone Marrow Hyperoxia (95% O2) Attenuated alveolar and vascular lung injury and pulmonary 
hypertension in neonatal rats

Van Haaften, 2009 – 
PMID 19713449

MSC Bone Marrow Hyperoxia (75% O2) Reduced alveolar loss and prevented pulmonary 
hypertension in neonatal mice

Aslam M, 2009 – PMID 
19713447

eNOS expressing MSCs Bone marrow/IV MCT Improvement in right ventricular impairment, decrease in 
RVSP, RV/body weight ratio decreased

Kanki-Horimoto, 2006 – 
PMID 16820570

MSC expressing HO-1 
transgene

Bone marrow/IV Chronic  hypoxia Prevented and reversed PAH, reversed RV hypertrophy and 
vascular remodeling.
HO-1 prevented against oxidative damage

Liang, 2011 – 
PMID20957739



Citation: Rajabali S, Stewart DJ, Mei SHJ, Thébaud B (2012) The Emerging Role of Stem/Progenitor Cells in Pulmonary Vascular Disease. J Clin 
Exp Cardiolog S8:004. doi:10.4172/2155-9880.S8-004

Page 4 of 13

ISSN:2155-9880 JCEC, an open access journalCongenital Heart Disease-Recent Discoveries and InnovationsJ Clin Exp Cardiolog

number of circulating EPCs than healthy control subjects 
[37], suggesting the mobilization of EPCs may play some 
biological role in lung disease. Similar to the prognostic role 
of EPCs described in ischemic diseases, illness severity [37] 
and improved survival [38] appear to correlate with increased 
circulating EPCs in acute lung injury as well. Circulating EPCs 
are significantly increased in patients with pneumonia while 
patients with low EPC counts have persistent fibrotic changes 
even after recovery from pneumonia. In patients with chronic 
lung disease, the EPC (CD34+, CD133+, KDR+, kinase-
domain region, also known as VEGF receptor 2 or fetal liver 
kinase-1/Flk-1) count is decreased and correlates with disease-
severity [39]. In the developing lung, arrested alveolar growth 
in hyperoxia-induced BPD in neonatal mice is associated with 
decreased circulating, lung and bone marrow EPC (CD45-, 
Sca-1+, CD133+, VEGFR-2+) [40]. 

b. Role of EPCs in PAH: In PAH, vascular remodeling involves 
hyperproliferative and apoptosis-resistant pulmonary artery 
endothelial cells, which are thought to arise as a consequence 
of an initial endothelial injury and apoptosis. Therefore, it is 
unclear whether circulating EPCs will reduce vascular injury 
and promote repair, or whether they might contribute to an 
angioproliferative response and thus potentially worsen the 
disease. Levels of circulating CD34+ CD133+ bone marrow-
derived proangiogenic precursors were higher in peripheral 
blood from patients with PAH than in healthy controls and 
correlated with pulmonary artery pressure, whereas levels of 
resident endothelial progenitors in PAH pulmonary arteries 
were comparable to those of healthy controls [41]. Colony-
forming units of endothelial-like cells (CFU-ECs) derived 
from CD34+ CD133+ bone marrow precursors of PAH 
patients secreted high levels of matrix metalloproteinase-2, 
had greater affinity for angiogenic tubes, and spontaneously 
formed disorganized cell clusters that were hyper-responsive 
to transforming growth factor-β or BMP-2. In NOD SCID 
mice with PAH, subcutaneous injection with CFU-ECs within 
Matrigel plugs, but not with control CFU-ECs, produced 
cell clusters in the Matrigel and proliferative lesions in 
surrounding murine tissues. Thus, mobilization of high 
levels of proliferative bone marrow-derived proangiogenic 
precursors is a characteristic of PAH and may participate in 
the pulmonary vascular remodeling process [41]. Conversely, 
Junhui et al. [42] found reduced number and activity of 
circulating, AC133+(CD133), KDR+ EPCs in patients with 
idiopathic PAH. Likewise, Diller et al. [43] found decreased 
number of circulating CD34+, CD34+/AC133+, CD34+/
KDR+, and CD34+/AC133+/KDR+ progenitor cells in 
Eisenmenger patients compared with healthy control subjects. 
Reductions in EPC numbers correlated with New York Heart 
Association functional class, 6-minute walk distance, and 
plasma brain-type natriuretic peptide levels. The capacity of 
cultured peripheral blood mononuclear cells to form colonies 
and incorporate into tube-like structures was impaired in 
Eisenmenger patients. Idiopathic PAH patients had reduced 
numbers of EPCs, and the number of circulating EPCs 
correlated with invasive hemodynamic parameters in this 
cohort. Interestingly, treatment with the phosphodiesterase 
inhibitor sildenafil was associated with a dose-dependent 
rise in EPC numbers within the idiopathic PAH population, 
resulting in levels consistently above those found with other 

therapies. Accordingly, Hansmann et al. demonstrated that in 
patients with IPAH, PAH associated with congenital heart or 
connective tissue disease, the number of CD34+/KDR+ and 
CD34+/KDR+/CD31+/CD45- (so-called “late” EPCs, i.e. EPCs 
in advanced differentiation) were about half the numbers of 
matched controls [44]. The authors used a novel microfluidic 
device for easy capture and rapid enumeration of EPCs by 
surface markers (CD34+/KDR+/CD31+/CD45-) that may 
prove useful for evaluation of disease severity and guidance of 
therapeutic interventions [44].

Conversely, there have been studies that show a detrimental 
role of EPCs in vascular remodeling [45]. Toshner et al. 
found that EPC markers, especially in the plexiform lesions, 
were upregulated in all patients with PAH [46]. In addition, 
the number of circulating angiogenic progenitors (CD133+, 
CD34+, VEGFR2+) were increased. The late outgrowth 
progenitor cells showed a hyperproliferative phenotype and 
impaired vascular network formation in patients with PAH with 
BMPRII mutation. Proangiogenic progenitor cells (CD34+, 
CD133+) also contribute to the pathogenesis of asthma and 
PAH [47]. These reports suggest that while EPCs may show 
therapeutic benefit, they may also potentially contribute to 
disease progression. Further studies are therefore required to 
elucidate which EPC phenotype has a beneficial role and which 
may have a deleterious effect. 

c. Controversy around the definition of EPCs: A major 
limitation has been the lack of a clear definition of how to 
unambiguously identify circulating EPCs, and thus, deciding 
which cell population to infuse into patients. Various methods 
exist for the isolation and identification of EPCs [48,49] 
(Figure 1). Most of the above mentioned studies relied on the 
expression of cell surface markers such as CD34, CD133, and 
VEGFR2 (KDR/Flk-1); however, there is yet no clear agreement 
on what markers define a “true” EPC. Alternatively, EPCs can 
be derived by culturing MNCs in conditions that promote EC 
specification. Schematically, there are three major methods to 
culture of EPCs from circulating mononuclear cells (MNC). In 
one assay, nonadherent MNCs cultured on fibronectin form 
so-called colony forming unit-Hill (CFU-Hill) within 5-9 
days [50]. CFU-Hills display some phenotypic and functional 
characteristics of endothelial cells, including expression of cell 
surface antigens (CD31, CD105, CD144, CD146, vWF, and 
VEGFR2) and uptake of AcLDL. However, they also express 
hematopoietic-specific antigens CD45 and CD14, display 
nonspecific esterase and phagocytic capabilities consistent 
with monocytes/macrophages, and cannot be propagated long 
term in culture [49]. A second assay identifies adherent, so 
called “circulating angiogenic cells” (CACs) following 4 days 
of culture in endothelial specific conditions [51,52]. Likewise, 
CACs resemble endothelial cells phenotypically but are also 
enriched for hematopoietic-derived monocytes/macrophages. 
Less studied cells are the so-called endothelial colony forming 
cells (ECFCs) [53-57]. Cells plated on collagen I in endothelial 
growth media form cobblestone-like adherent colonies within 6 
days from umbilical cord blood MNCs, or 14-21 days from adult 
peripheral MNCs [56]. A very similar population can also arise 
from the prolonged (~2 week) culture of MNCs on fibronectin 
and have been termed late outgrowth EPCs. By definition, a true 
EPCs is a cell that can be clonally and serially replated in culture 
and will give rise to endothelium by differentiation in vitro or in 



Citation: Rajabali S, Stewart DJ, Mei SHJ, Thébaud B (2012) The Emerging Role of Stem/Progenitor Cells in Pulmonary Vascular Disease. J Clin 
Exp Cardiolog S8:004. doi:10.4172/2155-9880.S8-004

Page 5 of 13

ISSN:2155-9880 JCEC, an open access journalCongenital Heart Disease-Recent Discoveries and InnovationsJ Clin Exp Cardiolog

vivo. In contrast to CFU-Hills and CACs, which display various 
monocyte/macrophage phenotypes and function (Table 
1) [58], ECFCs are characterized by (i) robust proliferative 
potential, [14] secondary and tertiary colony formation upon 
replating, and (iii) de novo blood vessel formation in vivo 
when transplanted into immunodeficient mice [59]. Current 
efforts focus on improved characterization of circulating EPCs. 
Using a combined protocol including polychromatic flow 
cytometry, colony assays, immunomagnetic selection, and 
electron microscopy, Mund et al. were able to reliably identify 
ECFCs and mature circulating endothelial cells (CD34+, 
CD31+, CD146+, CD105+, CD45-) in circulating peripheral 
blood and cord blood with ECFCs being increased in cord 
blood and extremely rare in the peripheral blood of healthy 
adults [60]. In summary, evidence suggests that CFU-Hill and 
CACs are not true EPCs, but modified myeloid lineage cells 
that participate in neoangiogenesis. Nonetheless, these cells 
still display therapeutic benefit, but they do not require direct 
transdifferentiation into the endothelial monolayer of new 
vessels. In contrast, ECFC display all the features of a true EPC: 
clonal proliferative capacity, hierarchy of proliferative potential, 
and de novo vessel forming ability in vivo. However, in the only 
study directly comparing the therapeutic potential of early 
versus late outgrowth EPCs in the treatment of experimental 
PAH, only early population of endothelial-like, culture-
modified monocytes were able to prevent MCT-induced PAH 
[61]. In addition, recent studies suggest that highly proliferative 
ECFCs may contribute to plexiforms lesions [47]. Thus, while 

the highly proliferative forms of “true” EPCs may be potentially 
exciting, both their efficacy and safety need to be defined in 
rigorous preclinical testing before any consideration to use 
these cell populations in translational clinical studies. 

All together, these findings suggest that EPCs leave the 
bone marrow, enter the circulation and then migrate to the 
pulmonary vasculature and perivascular tissue where they 
contribute to repair the injured endothelium and help restoring 
lung integrity. Since endothelial dysfunction plays a role in 
PH and EPCs are responsible for endothelial homeostasis and 
neovascularization, various studies have been conducted to 
explore the therapeutic potential of EPCs in PAH. 

d. Therapeutic potential of EPCs in PH: One of the first studies 
was performed in dehydromonocrotaline induced PH in 
dogs. EPC transplantation in the lungs using a bronchoscope, 
improved mean pulmonary arterial pressure, cardiac 
output and pulmonary vascular resistance and improved 
neovascularization of the lung [62]. Subsequent studies seem to 
suggest that the therapeutic activity of EPCs could be enhanced 
by genetic engineering. Zhao et al. [63] explored the role of 
bone marrow derived endothelial like progenitor cells in MCT-
induced PH in rats. ELPC were characterized by Dil acetylated 
LDL uptake, UEA-1 lectin staining, and immunostaining to 
detect vWF and Flk-1 expression. Endothelial like progenitor 
cells administered 3 days after MCT completely prevented PH. 
Endothelial like progenitor cells incorporated in the pulmonary 
microvasculature. When endothelial like progenitor cells were 
administered 3 weeks after MCT, they prevented further increase 
in right ventricular systemic pressure. Importantly, only 
endothelial like progenitor cells transduced with eNOS were 
able to significantly reverse established PH. Adrenomedullin 
gene-transduced EPCs, derived from umbilical cord blood, 
improved MCT-induced PH in rats to a greater extent than 
EPCs alone [64]. EPCs transfected with calcitonin gene related 
peptide significantly decreased PH and vascular remodeling in 
immunodeficient rats with an abdominal aorta to inferior vena 
cava shunt operation [65].

Decreased BMPR2 expression and derangement of TGF-ß 
signaling has been implicated in the pathogenesis of PAH. In 
a recent study, adenoviral BMPR2 gene delivery to pulmonary 
vascular endothelium in chronic hypoxia and MCT –induced 
PAH, showed improved pulmonary and cardiac function and 
reduced vascular remodeling. In addition, increase in TGF-ß was 
prevented by BMPR2 treatment and endothelial-mesenchymal 
transition, brought on by TGF-ß1, was partially improved 
[66]. The therapeutic potential of BMPR2 upregulation alone 
or in combination with genetically engineered EPCs in PAH 
remains to be explored.

In a pilot clinical study to test the feasibility and safety of 
intravenous infusion of autologous EPCs in patients with IPAH, EPC 
therapy improved exercise outcomes and hemodynamics in patients 
with idiopathic PAH [67]. This treatment was also found to be safe in 
children with idiopathic PAH [68]. An early phase clinical study has 
also been initiated (http://clinicaltrials.gov/, Identifier: NCT00469027) 
in Canada, to investigate the safety and potential efficacy of eNOS-
enhanced autologous EPCs in patients with severe PAH, refractory to 
all available therapies. The Pulmonary Hypertension And Cell Therapy 
(PHACeT) trial is a dose escalation study, ranging from 7 to 50 million 
cells. Currently 7 out of 12 patients have been enrolled into the trial and 
received the therapy.

PB-MNC

Method A

CFU-EC
Method B

CAC
Method C
ECFC

Adherence
deplete on FN Discard

nonadherent
cells

Colonies
appear d4-9

Colonies
appear d7-21

d4, cells
enumerated

No colony
formation

Early
Outgrowth

Asahara, Hill

Early
Outgrowth

Asahara, Dimmeler

Late
Outgrowth

Hebbel, Ingram

Figure 1: Common Methods of EPC culture (from Prater et al., 2007, with 
permission).
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Mesenchymal stem/stromal cells (MSCs)

MSCs are plastic adherent adult stem cells originally described in 
the bone marrow with the ability to form cells within the osteogenic, 
chondrogenic, and adipogenic lineages [69]. While the definition of 
MSCs is still evolving, minimal criteria to define a human MSC have 
been established by the International Society for Cellular Therapy 
(Table 3) [70]. MSCs, because of their ease of culture and pleiotropic 
properties, are the major stem cell-based therapy explored in a great 
variety of experimental lung diseases [71]. Their therapeutic potential 
has also been explored in PH. 

Intratracheal administration of rat MSCs in MCT-induced PH 
improved endothelium-dependent vasodilatation of pulmonary 
arteries and decreased pulmonary vascular resistance. Despite the 
intratracheal administration, immunolabeled cells were not detected in 
the pulmonary vessel wall [72]. 

Bone marrow derived MSC from donor rats with MCT induced 
PAH when intravenously administered to recipient rats with MCT 
induced PAH (to mimic autologous transplantation) improved right 
ventricular function, pulmonary artery narrowing, alveolar septum 
thickening and right ventricular hypertrophy [73]. In neonatal PH 
associated with oxygen-induced lung injury, intratracheal MSCs 
prevented the decrease in pulmonary arterial acceleration time, right 
ventricular hypertrophy and decreased lung angiogenesis [74].

Similar to EPC therapy, MSCs were used as a vector for delivery 
of prostacyclin synthase gene. MSCs engineered to overexpress 
the prostacyclin synthase gene engrafted in the lung and restored 
prostacyclin synthesis in MCT-induced PH. This was associated with an 
improvement in PH, pulmonary arteriolar remodeling and decreased 
right ventricular hypertrophy [75]. Similar results were described with 
MSCs overexpressing eNOS [76]. More recently, MSCs overexpressing 
human hemeoxygenase-1 transgene in the lung, prevented and reversed 
chronic hypoxia induced PAH in mice [77]. 

This study also explored the paracrine effect of cell-based therapies. 
Indeed, the limited amount of cell engraftment suggests that alternate 
mechanisms account for the therapeutic benefit of these cells [78]. In 
vitro experiments showed that conditioned medium of these MSCs 
attenuated hypoxia-induced lung inflammation and inhibition of 
smooth muscle cell proliferation [77], suggesting new therapeutic 
avenues for the treatment of PH. Likewise, Aslam et al showed that a 
single injection of MSC conditioned media prevented vascular changes 
and right ventricular hypertrophy in a hyperoxic neonatal mouse 
model [79]. 

Compared to EPCs, MSCs are immmunopriviliged and thus 
provides the advantage of making heterologous MSC transplantation 
a potential approach for clinical therapies [78]. Given that engraftment 
seems to play a minor role in the therapeutic benefit of MSCs, the 
legitimate question remains which cell-based strategy is the most 
advantageous in terms of feasibility, efficacy and safety: whole cell 
administration or cell-free conditioned media applications, or delivery 
of certain conditioned media components. 

Conclusion
More than a century has passed since the first recorded description 

of pulmonary vascular disease by Romberg in 1891 [80]. Since then 
we have developed a greater understanding of the pathophysiology, 
diagnosis and treatment of pulmonary vascular disease. Despite 
these advances, pulmonary vascular disease remains a disease with 
grim prognosis and early diagnosis remains a challenge. In order to 
combat the poor outcome of pulmonary vascular disease, a better 
understanding of the disease mechanism is required to alter the 
natural history of the disease. In addition, better diagnostic tools need 
to be developed for early diagnosis. The current treatment focuses 
on restoring the vasomotor tone of the pulmonary vasculature. New 
insights into the pathophysiology of pulmonary vascular disease will 
allow focusing on therapies that alter and/or reverses the disease 
process. Increased understanding of the biology of stem cells and their 
involvement in the pathophysiology of pulmonary vascular disease 
have opened new therapeutic avenues for cell-based therapies and 
clinical proof of concept and safety trials using EPCs are currently 
under way. Other therapeutic targets may include the modulation of 
resident and circulating stem/progenitor cells that contribute to the 
pathophysiology of pulmonary vascular disease. Finally, the recent 
discovery of iPS cells will undoubtedly shed new light on some of the 
genetic causes of pulmonary vascular disease and provide a platform 
for drug testing. 
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