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Introduction
Obstructive Sleep Apnea (OSA) has become a major problem 

throughout the United States, affecting approximately 1 in 4 men and 
1 in 10 women [1]. A number of studies have identified OSA patients 
to be at increased risk for perioperative complications. However, 
mechanisms to explain acute complications in this patient population 
remain largely unexplored. While many clinicians have focused on 
hypoventilation and desaturation events, some researchers point to the 
potential association of airway obstruction and adverse hemodynamic 
consequences as a reason for complications. While a number of studies 
describe and explain the long-term cardiovascular consequences 
especially on pulmonary arterial pressures associated with repeated 

short-term relationship between increased airway resistance and 
changes in stroke volume (SV) and cardiac index (CI), respectively [4]. 
This is important as pre-existing pulmonary hypertension has been 
suggested to be a major risk factor for complications in the postoperative 
period, likely due to worsening of right heart strain [5]. In a previous 
trial, our study group could detect significant hemodynamic alterations 
during simulated upper airway obstruction in healthy volunteers 
[6]. However, no mechanism for our finding could be established at 
the time. In this study we therefore sought to identify if increases in 
pulmonary arterial pressures were associated with depression of cardiac 
hemodynamics during airway resistance breathing. Specific goals were 

(1) to examine the effect of increasing airway resistance on a number of 
cardiac parameters and (2) to determine if the detected hemodynamic 
alterations were associated with changes in estimated pulmonary 
arterial pressures obtained using transthoracic echocardiography 
(TTE).

Material and Methods
Ethics approval, demographics

After approval by the institutional review board (Hospital for 
Special Surgery), 16 healthy, male volunteers aged 18 or older without a 
history of cardiovascular and/or pulmonary disease were enrolled. Data 
on patient demographics (age, ethnicity, BMI) were recorded.
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Abstract
Previous research suggests that increases in airway resistance are associated with a depression in a number of 

hemodynamic variables. In this study we evaluated the hypothesis that these changes may be in part associated and 
explainable with increases in pulmonary vascular pressures. We therefore examined the effect of increasing airway 
resistance on a number of cardiac parameters, and estimated pulmonary arterial pressures using transthoracic 
echocardiography (TTE) in spontaneously breathing healthy volunteers.

Methods: Subjects were connected to a bioreactance monitor capable of determining hemodynamic parameters 
including stroke volume (SV), and cardiac index (CI). Blood pressure (NIBP) was obtained non-invasively. Volunteers 
sequentially breathed for 2 minutes through endotracheal tubes (ETT) with decreasing internal diameters (ID) 
between 8.0 and 3.0 mm in order to simulate increasing airway resistance, while attached to spirometric equipment. 
A second measurement cycle was performed for validation. TTE was performed focusing on the estimation of 
pulmonary arterial pressures during the experiment. Statistical analyses were performed using the generalized 
estimating equations (GEE) method and Spearman correlation. 

Results: All subjects were male, (mean age 29.8 years (SD 5.4), mean BMI 26.75 kg/m2 (SD 4.8)). Mean 
baseline SV and CI were 117.48 ml (SD 14.0) and 3.72 l/min/m2 (SD 0.7); both, SV and CI decreased significantly vs. 
baseline when breathing through ETT ID 3.0 (111.50 ml (SD 15.3), p=0.0016 and 3.51 l/min/m2 (SD 0.7), p=0.0007, 
respectively). For the same breathing cycles, no change in averaged systolic pulmonary arterial pressure (SPAP) 
was detected between baseline and ETT ID 3.0 (24.45 mm Hg (SD 5.1) vs. 24.87 mm Hg (SD 5.6), p=0.43). 

Discussion: Although detecting hemodynamic alterations when simulating upper airway resistance in healthy 
volunteers, there was no significant change in systolic pulmonary arterial pressure (SPAP) seen. Further research 
is needed to investigate potential mechanisms associated to hemodynamic changes in response to increases in 
airway resistance.

airway obstruction [2,3], only limited data exist evaluating a direct, 

Jo
ur

na
l o

f A
ne

sth
esia & Clinical Research

ISSN: 2155-6148

Journal of Anesthesia & Clinical 
Research



Citation: Danninger T, Haskins S, Stundner O, Ma Y, Nejim J, et al. (2013) The Effect of Incremental Airway Resistance on Cardiac Performance and 
Pulmonary Pressure in Spontaneously Breathing Volunteers. J Anesth Clin Res 4: 360. doi:10.4172/2155-6148.1000360

Page 2 of 4

Volume 4 • Issue 10 • 1000360
J Anesth Clin Res
ISSN:2155-6148 JACR an open access journal 

Data collection

After signing an informed consent form, subjects were asked to 
position themselves supine on a stretcher before being connected to a 
bioreactance monitor (NICOM, Cheetah Medical Inc, Vancouver, WA) 
capable of continuously recording stroke volume (SV), cardiac index 
(CI) and oxygen saturation (SpO2) [7]. In order to monitor respiration-
associated variables, an anesthetic circuit was set up in manual mode. 
A nose clip was applied and subjects were asked to breathe through a 
mouthpiece which was attached to a device recording spirometry data 
and ent-tidal CO2 data (EtCO2; Datex Ohmeda, Madison, WI). Blood 
pressure (NIBP) was obtained non-invasively using the integrated 
blood pressure cuff. Baseline data was collected for five minutes. 
Endotracheal tubes (ETT; Covidien, Mansfield, MA) with decreasing 
internal diameters (ID; 8.0, 6.0, 5.0, 4.0 3.0 mm) were used to simulate 
increasing airway resistance. After baseline measurement, subjects 
started breathing through the ETT beginning at ID 8.0 through size 3.0, 
2 minutes each. After the first set of measurement, a five minute recovery 
period was allowed; subjects were breathing through the unobstructed 
respiratory circuit during this period. A second measurement cycle was 
performed.

Transthoracic Echocardiography (TTE)

TTE was performed with the focus on estimating pulmonary arterial 
pressures. The method entailed measuring Systolic Pulmonary Arterial 
Pressure (SPAP) non-invasively via TTE using either Continuous Wave 
(CW) Doppler assessment of the maximal tricuspid regurgitation 
(TR) jet velocity or, when a TR jet was not present, via Pulse-Wave 
Doppler assessment of Pulmonary Artery Acceleration Time (PAAT). 
Non-invasive measurement of TR jet velocities has been shown to best 
correlate with pulmonary arterial catheter measurements; however, 
not all patients have sufficient TR to accurately calculate the estimated 
peak systolic pulmonary arterial pressure (EPSPAP). In 2011, Yared et 
al. published a method demonstrating that in patients without a TR 
jet, PAAT can be accurately used to measure EPSPAP. The regression 
equation describing the relationship between PAAT and EPSPAP is as 
follows log10 (EPSPAP)=−0.004(PAAT)+2.1(P<0.001) [8]. Therefore, 
PAAT was utilized when CW assessment of TR jet velocities was not 
possible. Given the limited time frame during each of the individual 
breathing cycles, the TTE examination was focused solely on 
determining the SPAP or EPSPAP. Mean Pulmonary Arterial Pressures 
(mPAP) were calculated directly from the SPAP using the equation 
mPAP=0.61×sPAP+2 mm Hg [9].

Data recording and statistical analysis

Hemodynamic data were recorded every 60 seconds (five readings 
for basline, two readings for each level of airway resistance). All 
recorded data for both measurment cycles were then tabulated and 
averaged for each level/patient. Continous data is expressed as mean 
and standard deviation (SD). Multiple regression analyses based on the 
generalized estimating equations (GEE) method were conducted to 
assess changes from baseline for outcomes of interest, adjusting for age 
and BMI [10]. The GEE method is able to take into account correlations 
between repeated measures with different ETT tube sizes and does not 
require a particular distribution for data, leading to robust parameter 
estimation. Correlations between outcomes and ETT tube size were 
evaluated using Spearman rank correlation coefficient. P-values less 
than 0.05 were considered statistically significant.

Results

We found a significant change in CI between baseline and ETT 
ID 3.0 (3.72 l/min/m2 (SD 0.7) vs. 3.51 l/min/m2 (SD 0.7), p=0.0007). 
Similarly a decrease was seen for SV (117.48 ml (SD 14.0) vs. 111.50 
ml (SD 15.3), p=0.0016, Figures 1 and 2). Mean values for EtCO2, HR, 
NIBP and SpO2 are presented in Table 1. No major differences were 
found for the variables across all tube sizes except for EtCO2 and HR.

There was no significant change found for SPAP between baseline 
and ETT ID 3.0 (24.45 mm Hg (SD 5.1) vs. 24.87 mm Hg (SD 5.6), 
p=0.43, Figure 3) or any other tube sizes; similarly, no significant 
change was seen for estimated mPAP (16.90 mm Hg (SD 3.1) vs. 17.17 
mm Hg (SD 3.4), p=0.41).

Correlation analysis revealed a significant correlation between ETT 
tube size and EtCO2 (r=0.30, P=0.0025), however there was no other 
significant correlation found for the recorded parameters (Table 2).

Discussion
In this volunteer study simulating increased airway resistance, we 

were able to show significant hemodynamic alterations in CI, SV, HR 
and a significant increase in EtCO2 while NIBP and SpO2 remained 
unchanged. However, we did not observe any significant changes of 

 

Figure 1: The figure displays cardiac index during discrete level of increased 
external airway resistance.

 

Figure 2: Stroke volume during discrete level of increased external airway 
resistance.

29.8 years (SD 5.4), and mean BMI was 26.75 kg/m2 (SD 4.8). All subjects 
completed the study without incident.

16 healthy, male volunteers were enrolled in the trial. Mean age was 
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systolic or mean pulmonary arterial pressure with increases in airway 
resistance. 

The significant decrease in CI and SV observed in this study is 
consistent with results of previously published data [6]. This model 
has several advantages compared to the Mueller maneuver which have 
been discussed extensively in the latter article. The key advantage of our 
model lies in the possibility of discretely increasing airway resistance 
allowing a continuous and repetitive assessment of hemodynamic 
changes. Furthermore, it considers the expirational component of the 
breathing cycle, specifically important to patients suffering from partial 
airway obstruction. We could also detect a significant change in EtCO2 
which may reflect the impaired exhalation of carbon dioxide during 
increased airway resistance. When performing Spearman’s correlation 
analysis, EtCO2 was not surprisingly found to have a highly positive 
correlation with a decrease in tube size. It has been suggested that 
mechanisms frequently found in patients with OSA, including carbon 
dioxide retention, may be contributors to the development of cardiac 
diseases (e.g. artrial fibrillation) [11,12]. However, a number of different 
patient populations, including patients undergoing procedural sedation 
or patients in an intensive care unit when increases in resistance occur 
with various airway devices (e.g. mucus plug in tracheostoma), is 

known to frequently suffer from periods of increased airway resistance. 
It remains speculative if the changes observed in our trial would have a 
clinically significant impact on those patient populations.

The further evaluation of pulmonary arterial pressures using TTE 
revealed no significant changes during increases in airway resistance. It 
is therefore unlikely that the hemodynamic alterations can be explained 
by an acute change in pulmonary pressures, at least in healthy volunteers 
with no previous history of pulmonary hypertension. Therefore, other 
factors have to be taken into consideration. Orban et al. demonstrated 
a decrease in left atrial volume and an increase in left ventricular end 
systolic volume acutely in response to high negative intrathoracic 
pressure resulting in a decrease in SV, cardiac output and ejection 
fraction using TTE [4]. The influence of intra- and extrathoracic as well 
as changes in transmural pressure on this finding have been discussed 
extensively over decades [13-15]. Although using Mueller’s maneuver 
to simulate high negative intrathoracic pressure has been shown to 
closely simulate changes in OSA patients [14,16], a major disadvantage 
consists in the all or nothing change in airway resistance not accounting 
for the expirational component of the breathing cycle in partial airway 
obstruction. Unfortunately, given the limited time for the capture of 
TTE images and the focus of our exam, we were not able to analyze 
cardiac filling patterns and obtain necessary views and measurements. 

Additional limitations to this study have to be addressed. Firstly, 
we have performed this investigation in healthy, male volunteers with a 
mean age of approximately 30 years and an average BMI of 26.75 kg/m2. 
Therefore, we cannot determine if our results would have been different 
in other populations such as females, obese patients and those with 
preexisting diseases including sleep apnea or pulmonary hypertension. 
The absence of major comorbidities is crucial because e.g. ischemic 
heart disease or heart failure are very likely to alter cardiac performance 
[17]. Therefore, our results derived from the TTE have to be interpreted 
with caution, as it may be possible that patients with comorbidities 
or reduced cardiac performance may show different alterations in 
pulmonary pressures. Moreover, and as mentioned previously we were 
not able to determine and analyze atrial or ventricular filling patterns. 
Thirdly, our study period consisted of two minutes per tube size only. 
This may have been an insufficient period of time to capture changes in 
pulmonary arterial pressures. 

In conclusion, in healthy, male volunteers the change in 
hemodynamic parameters, such as CI or SV, was not accompanied 
by changes in systolic pulmonary arterial pressure. Therefore, other 
possibly causative reasons have to be investigated to further understand 
hemodynamic alterations. Observational studies in patients with 
comorbidities such as OSA and cardiac disease may address limitations 
of this proof of concept analysis.
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Baseline #8 #6 #5 #4 #3
End-tidal CO2 mm Hg; 
mean ± SD (p-value) (0.1805)

40.86 ± 6.15 
(0.027)

42.9 ± 5.48 
(<0.0001)

44.40 ± 4.80 
(<.0001)

42.45 ± 5.85 
(0.0005)

Heart rate bpm; mean ± 
SD (p-value)

65.79 ± 8.50 64.45 ± 9.11 
(0.0001)

64.27 ± 9.21 
(<0.0001)

64.49 ± 9.26 
(0.0008)

64.44 ± 9.17 
(0.0002)

65.43 ± 9.18 
(0.4063)

Mean arterial pressure 
mm Hg; mean ± SD 
(p-value)

84.95 ± 8.17 84.87 ± 7.76 
(0,4113)

85.41 ± 7.12 
(0,8994)

85.31 ± 8.05 
(0,8206)

86.03 ± 7.99 
(0,8353)

87.38 ± 9.58 
(0,8591)

SPO2%; mean ± SD 
(p-value)

98.58 ± 0.80 98.72 ± 0.64 
(0.231)

98.79 ± 0.66 
(0,2884)

98.71 ± 0.77 
(0,3127)

98.69 ± 0.75 
(0,1017)

98.42 ± 0.86 
(0,2413)

Table 1: Changes in various (Hemodynamic) parameters [end-tidal CO2, heart rate, mean arterial blood pressure and oxygen saturation (SPO2)] across different levels of 
airway resistance.

Spearman correlation 95% Confidence intervals p Value

End-tidal CO2 0.30331 0.109477 0.474913 0.0025
PSAP 0.00782 -0.192973 0.207975 0.9399
mPAP 0.00848 -0.192337 0.208607 0.9349
CI -0.10543 -0.299583 0.097109 0.3075
HR -0.0175 -0.217224 0.18363 0.866
SV -0.1664 -0.35504 0.035264 0.1053

Table 2: Correlation analysis for pulmonary systolic arterial pressure (PASP), 
mean pulmonary arterial pressure (mPAP) and various hemodynamic parameters 
across different levels of external airway resistance. (CI=cardiac index, HR=heart 
rate, SV=stroke volume).

 

Figure 3: Systolic pulmonary arterial pressure during discrete level of increased 
external airway resistance.

39.45 ± 5.40 40.13 ± 5.70
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