
Biomedical Engineering and 
Medical Devices

1J Biomed Eng Med Dev, Vol.7 Iss.9 No:1000237

OPEN ACCESS Freely available online

Research Article

Correspondence to: Charles Chinedu Nworu, Department of Statistics, Michael Okpara University of Agriculture Umudike, Umuahia, Abia State, Nigeria, 
E-mail: nccharles19@gmail.com 

Received: 26-Sep-2022, Manuscript No. BEMD-22-19368; Editor assigned: 29-Sep-2022, PreQC No. BEMD-22-19368 (PQ); Reviewed: 13-Oct-
2022, QC No. BEMD-22-19368; Revised: 20- Oct-2022, Manuscript No. BEMD-22-19368 (R); Published: 27-Oct-2022, DOI: 10.35248/2475-
7586.22.07.237

Citation: Nworu CC, Ekpenyong JE, Chisimkwuo J, Okwara G, Agwu OJ, Onyeukwu NC (2022) The Effects of Modified ReLU Activation Functions 
in Image Classification. J Biomed Eng Med Dev.7:237.

Copyright: © 2022 Nworu CC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

The Effects of Modified ReLU Activation Functions in Image Classification
Charles Chinedu Nworu1*, Emmanuel John Ekpenyong1, John Chisimkwuo1, Christian Nduka Onyeukwu2,  

Godwin Okwara1, Onyekachi Joy Agwu1

1Department of Statistics, Michael Okpara University of Agriculture Umudike, Umuahia, Abia State, Nigeria;2Department of Computer 
Science, Michael Okpara University of Agriculture Umudike, Umuahia, Abia State, Nigeria 

ABSTRACT

The choice of activation functions is very important in deep learning. This is because activation functions are 
capable of capturing non- linear patterns in a data. The most popular activation function is the Rectified Linear 
Unit (ReLU) but it suffers from gradient vanishing problem. Therefore, we examined the modifications of the 
ReLU activation function to determine its effectiveness (accuracy) and efficiency (time complexity). The effectiveness 
and efficiency was verified by conducting an empirical experiment using x-ray images that contains pneumonia 
and normal samples. Our experiments show that the modified ReLU, ReLU6 performed better in terms of low 
generalization error (97.05% training accuracy and 78.21% test accuracy). The sensitivity analysis also suggests 
that the ELU is capable of correctly predicting more than half of the positive cases with 52.14% probability. For 
efficiency, the GELU shows the lowest training time when compared with other activation functions. This will allow 
practitioners in this field to choose activation functions based on effectiveness and efficiency.
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INTRODUCTION

 The role of activation functions in image classification problems 
cannot be overemphasized. This is because activation functions 
play a huge role in calculating the values for every activation in 
each layer [1]. Within the hidden layers, it accepts some input 
values, introduce some non-linear properties then produce an 
output node, which is passed to the next layer of the network as 
inputs. The non-linear properties introduced by the activation 
functions are capable of learning complex patterns in images, 
sounds, videos, and words/sentences [2]. Without these activation 
functions, the model is akin to a classical linear regression model 
which has limited power and does not perform well most of the 
times [3]. Some activation functions have been proposed but there 
is no designated one for a general case. The performance of the 
neural network could depend on the type of activation function 
and data type [4], number of dense layers, learning rate. Yet, one 
of the activation functions that have gained popularity in the deep 
learning field is the Rectified Linear Unit (ReLU).

Empirical studies have shown that the ReLU have proved to be 
the best per-forming activation functions in terms of convergence 
rate and faster learning [1,5]. Also, the ReLU solves the problem 

of vanishing gradient during back- propagation [6]. Going forward, 
the ReLU has its own limitations. For example, during the training 
stage, some gradients might die; hence the learning process will 
stop at that point [7]. To resuscitate these dead neurons, some 
modifications were made to the ReLU. Soric et al., applied three 
variations of the ReLU for a chest x-ray classification task [8]. Their 
results showed that the PReLU is an upgrade of the ReLU.

For this work, we will consider other variants of the ReLU activation 
function. We will also evaluate their performances in terms of their 
generalization error (training and test errors). In addition, their 
training execution times will be monitored for comparison as well. 
The rest of the paper is structured as follows, section 2, we will 
examine the Convolution Neural Network (CNN) architecture 
used for this paper. Section 3 is dedication to the variations of 
the ReLU activation functions we used. In section 4, the different 
regularization we used to reduce the effect of overfitting. We will also 
discuss some of the evaluation metrics in section 5. Lastly, section 
6 is reserved for summary, conclusion, and further improvements 
to the work if any. In a deep neural network, several activation 
functions have been proposed by different authors. Some of these 
activation functions have trainable parameters while some are fixed [9].



2

Nworu CC, et al. OPEN ACCESS Freely available online

J Biomed Eng Med Dev, Vol.7 Iss.9 No:1000237

while the validation and test sets contains 624 and 18 of both 
healthy and pneumonia images respectively. Chest X-ray images 
(anterior- posterior) were selected from retrospective cohorts of 
pediatric patients of one to five years old from Guangzhou Women 
and Children’s Medical Center, Guangzhou.

RESULTS

Convolution

 Convolution is mathematical operation that is applied to an 
input image to filter the information and produce a feature map 
[12]. This filter is also called a kernel, or feature detector, and its 
dimensions can be, for example, (Figure 1).

3 × 3 to perform convolution, the kernel goes over the input 
image, doing matrix multiplication element after element. For 
three channels, we calculate the convolution for each colour (Red, 
Blue, Green), then sum them up. Mathematically speaking, the 
convolution is a linear operation defined as:

  ( ) (a) w(t a)da= −∫ xs t  	 (1) 

Eq. 1 can be re-written as:

  s(t)=(x ∗ w)(t)			    (2)

Where the first term is the input, the second term is called the 
kernel and * is the convolution operation.

Kernel

A Kernel is a filter that is used to extract the features from the images 
[13]. It is a matrix that moves over the input data, performs the 
dot product with the sub-region of input data, and gets the output 
as the matrix of dot products. Figure 2 shows the convolution 
operation of a 6 × 6 image with a kernel size of 3. Our input data 
contains resized images of 180 × 180 with three channels (R, B, G). 
Hence, to extract features from the chest X-ray images, we applied 
kernel with a size of 3. The output of the projected map is given 
below, only if we considered the kernel size only:

  O=(N–K)+1		   (3)

Where N is the image size, K is the kernel size and O is the output 
size (Figure 2).

Due to the drawbacks of the ReLU activation function, two novel 
activation functions were proposed based on approximation of the 
maximum function [9], namely the Smooth Maximum Unit (SMU 
and SMU-1). The experiment was done using the CIFAR100 
dataset with ShuffleNet V2, PreActResNet-50, ResNet-50, and 
SeNet-50 models respectively. Their results showed a signifi- cant 
improvement on the classification accuracy using the proposed 
activation functions when compared with the ReLU and its 
variants.

The influence of the activation function in brain tumor type 
classification was examined by [10]. A new activation function 
called parametric scaled hyperbolic tangent (PSTanh) was compared 
with eight standard activation functions namely, tanh, ReLU, 
Leaky-ReLU, PReLU, ELU, SELU, Swish, ReLU-Memrister-Like 
Activation Function (RMAF).The experiments were conducted 
using MNIST, fashion-MNIST, CIFAR-10, CIFAR-100, and Ima- 
geNet datasets trained on CapsNets models and deep CNN models 
(i.e., AlexNet, SqueezeNet, ResNet50, and DenseNet121). The 
proposed PSTanh activation achieved better performance than 
other functions.

Farheen et al., compared the Swish activation function with 
Adaptive Piecewise Linear unit to get a broader understanding 
of the role of activation function and its importance in image 
classification [11]. The dataset used for the work is the Skin cancer 
MNIST: HAM10000. The Swish activation function showed to 
perform better than the Adaptive Piecewise Linear unit in terms of 
classification accuracy.

Soric et al., applied the CNN to classify Chest X-ray images [8]. 
They used the ReLU activation function and its variants, Leaky 
ReLU and PReLU. The hyperparameter of the Leaky ReLU was set 
to 0.3 and 30 respectively. But the model showed to have achieved 
better accuracy using the PReLU activation function.

MATERIALS AND METHODS

Experimental setup 

The platform of this experiment: the operating system is MacBook 
Pro (13- inch, 2020, Four Thunderbolt 3 ports); the processor 
model is 2 GHz Quad- Core Intel Core i5, the graphics card model 
is Intel Iris Plus Graphics 1536 MB; the memory size is 16 GB 3733 
MHz LPDDR4X; the Python version is 3.7; the Pytorch version is 
1.11.

Training process

The training process involves several hyper-parameters such as the 
number of epochs, batch size, learning rate and the optimization 
algorithm. For our work, we trained our model with a batch size of 
32 for 12 epochs. For optimization process, we applied the Adam 
stochastic optimization algorithm with a learning rate of 0.01. 
These processes were used for each activation function.

Data

 The data was collected from Kaggle repository. It consists of two 
categories of X-Ray images (Pneumonia/Normal). The dataset is 
organized into 3 folders (train, test, val) and contains subfolders 
for each image category (Pneumo- nia/Normal). The training set 
contains 3876 images of pneumonia and 1342 healthy images 

Figure 1: Our proposed CNN architecture. 



3

Nworu CC, et al. OPEN ACCESS Freely available online

J Biomed Eng Med Dev, Vol.7 Iss.9 No:1000237

Two common pooling techniques are average pooling and max 
pooling that summarizes the average presence of a feature and 
the most activated presence of a feature respectively. The most 
commonly used method in CNN is the max pooling with size of 2 
× 2, [14]. The choice of max-pooling is because it helps in extracting 
low-level features like edges, points [15]. Therefore, we applied a 
max-pooling of size, 2 × 2 for the chest x-ray image classification 
task. The output size with max-pooling (2 × 2) is given by:

  !2

0
2

− +
+=

N k p
sfloor

 		  (6) 

Where N is the image size, K is the filter size, S is the stride size and 
P is the number of the layers of the zero-padding (Figure 5).

Fully connected layer

The output from the final (and any) pooling and convolutional 
layer is flattened and then fed into the fully connected layer as 
described in Figure 6. After passing through the fully connected 
layers, the final layer uses the softmax activation function which 
is used to get probabilities of the input being in a particular class 
(classification) (Figure 6). 

It is also note-worthy that we added the batch normalization and 
dropout layers in the CNN architecture. The batch normalization 
is a regularization technique that helps to prevent overfitting 
[16]. This process is important because it improves the speed, 

Stride

Suppose we have a 6 × 6 input image as shown in Figure 3, if we 
apply the default stride of 1 in the convolution operation, we have a 
4 × 4 output only. What if we increase the stride to 2, then we have 
a 2 × 2 output only. Hence, stride provides extra opportunity to 
reduce the number of parameters in image classification task [14]. 
The filter is moved across the image left to right, top to bottom, 
with a one-pixel column change on the horizontal movements, 
then a one-pixel change on the vertical movements. The output 
size of an image can be formalized mathematically below for a given 
stride size:

  0 1−
= +

N Kfloor
s

 	 (4) 

Where N is the image size, K is the filter size, S is the stride size.

Padding

 During the striding process, some important features in the images 
especially at the edges and corners might not be captured. To 
overcome this problem, we apply zero padding at the border of the 
images. This helps to preserve the information at the borders by 
bringing them to the middle of the padded image. We can extend 
eq. 4 with the equation below, if we consider the zero-padding.

 
20 1− +

= +
N K Pfloor

S
 	 (5)

Where N is the image size, K is the filter size, S is the stride size and 
P is the number of the layers of the zero-padding.

Pooling

 Pooling is a dimension technique used in CNN to reduce the 
dimensions of the feature maps. Thus, it reduces the number 
of parameters to learn and hence increasing the computational 
efficiency in the network (Figures 3 and 4). 

Figure 2: Convolution operation with a kernel size of 3.
Figure 4: Convolution operation with P=1 and S=1. 

Figure 3: Convolution operation with stride of 1 and 2 respectively. 

Figure 5: Convolution operation with pooling size of 2 × 2.

Figure 6: Fully connected layer.
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performance, and stability of training. It does this by normalizing 
each layer’s inputs by squashing the values to a zero mean and unit 
variance in the current batch. Dropout layer was also implemented 
per-layer in the network. During training 50% of the layer outputs 
were randomly ignored (dropped out), this helps prevent overfitting 
as well (Table 1).

Table 1: The manually designed CNN architecture.

Layer Layer name Layer properties

1 Image Input
180 × 180 × 3 images with ’zerocenter’ 

normalization

2 Convolution
Input size=3, output feature size=16, 
kernel size=3, stride=1, padding=1

3 Batch Normalization Batch normalization, 16

4 ReLU or its variants ReLU or its variants

5 Max Pooling
2 × 2 max pooling with stride [2 2] 

and zero-padding. Output size =16 × 
90 × 90

6 Drop-out Drop-out (0.5)

7 Convolution
Input size=16, output feature size=16, 

kernel size=3, stride=1, padding=1

8 Batch Normalization Batch normalization, 16

9 ReLU or its variants ReLU or its variants

10 Max Pooling
2 × 2 max pooling with stride [2 2] 

and zero-padding. Output size =16 × 
45 × 45

11 Drop-out Drop-out (0.5)

12 Convolution
Input size=16, output feature size=16, 

kernel size=3, stride=1, padding=1

13 Batch Normalization Batch normalization, 16

14 ReLU or its variants ReLU or its variants

15 Max Pooling
2 × 2 max pooling with stride [2 2] 

and zero-padding. Output size =16 × 
22 × 22

16 Dropout Dropout (0.5)

17 Fully Connected 7744 fully connected layer

18 Softmax SoftMax

19 Classification Output Crossentropy

Activation functions

 At the activation layer, we apply a set of activation functions which 
we used for this work. Let us assume we have an activation function 
acting on a set of weight matrix, input vectors and bias terms as 
showed below (Figure 7). 

The Rectified Linear Unit (ReLU) is one of the most widely used 
activation functions proposed by [17]. It solves the vanishing 
gradient problem exhibited by the tanh and sigmoid activation 
functions [18]. Also, its overall computation speed makes it better 
than the sigmoid function. The ReLU activation function is given 
by:

ReLU (x)=max (0, x)	 	 (7)

One of the drawbacks of ReLU is that it is sometimes fragile during 
training, thereby causing some of the gradients to die during 
training [19]. This causes the weight update not to be activated 
because of the dead neurons [20]. To fix this problem, some 
modifications were made which resulted to some of the vari- ants of 
the ReLU activation function. These activation functions include: 
Leaky ReLU [21], SELU [22], PReLU [23], GELU [24], ELU [25], 
RReLU [26], CELU [27] and RELU6 [28].

DISCUSSION 

In Table 2, on training set, we can observe that the GELU has the 
best traning accuracy but with a lower test accuracy. It indicates that 
GELU may suffer from severe overfitting issue. We also observe 
that RELU6 has the best test accuracy when compared with other 
activation functions. This means, it has the capacity to predict 
unseen data. On the execution time, the GELU showed superiority 
in terms of completion time followed by PReLU. The Leaky ReLU 
did not perform well in terms of efficiency (Table 2).
Table 2: Accuracy, loss and estimation times for the different activation 
functions. 

Activation 
function

Training 
accuracy

Test 
accuracy

Training 
loss

Test loss
Execution 

time 
(seconds)

ReLU 0.9747 0.7772 0.1036 0.5647 3184.74

Leaky 
ReLU

0.9757 0.7115 0.0588 1.3752 4317.64

SELU 0.9603 0.6907 0.1049 1.6662 3314.29

PReLU 0.9791 0.7099 0.0576 1.1298 1917.75

GELU 0.984 0.7644 0.0545 1.0716 1897.99

ELU 0.9755 0.7244 0.0672 1.6081 2747.24

RReLU 0.9739 0.7404 0.0628 1.0027 2154.24

CELU 0.9762 0.7644 0.063 0.9922 2609.3

ReLU6 0.9705 0.781 0.0844 0.9527 2828.26

In terms of being able to predict correctly true positives and 
negatives, we considered the sensitivity and specificity measures 
as displayed in Table 3. As seen in the table, the ELU activation 
function has the largest sensitivity value of 52.14%, which means 
it was able to predict more than half of the pneumonia images 
correctly. With the SELU activation function, all the healthy 
images were correctly predicted, but performed pooly in predicting 
the unhealthy patients. We expect to predict correctly the number 
of positive cases to a certain degree of accuracy because if our model 
fails to predict unhealthy cases correctly and treated, the resultant 
effect is that it could lead to early death (Table 3).

Figure 7: Activation function acting on the input, weight, and bias 
matrices.
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Table 3: Sensivity and specificity values for the different activation 
functions.

Activation function Sensitivity Specificity

ReLU 0.4487 0.9744

Leaky ReLU(0.1) 0.2393 0.9949

SELU 0.1752 1

PReLU 0.235 0.9949

GELU 0.3889 0.9897

ELU 0.5214 0.9795

RReLU 0.3162 0.9949

CELU 0.4017 0.9821

ReLU6 0.4487 0.9821

CONCLUSION

In this paper, we analyzed nine rectified activation functions. 
We also compared their performances in terms of efficiency. 
Our findings suggest that ReLU6 outperformed other activation 
functions in terms of test accuracy. We also observed that the 
GELU had the lowest execution time.

Therefore, future work should be geared towards increasing the 
test accuracy scores. This can be done by tuning several hyper-
parameters. For example, in terms of the CNN architecture, we can 
either increase or decrease the number of hidden layers compared 
with the one we used. At the training stage, we could change our 
batch size and number of epochs. Lastly, at the optimization stage, 
we can try other optimizers while fine-tuning their learning rates.
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