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Introduction
Undifferentiated human embryonic stem cells (hESCs), as 

essentially the in vitro equivalent of the inner cell mass (ICM) of the 
blastocyst, have the potential for differentiation into any somatic cell 
type. This pluripotent state of hESCs is associated with the expression 
of a unique group of genes, including Oct-4, alkaline phosphatase, 
SSEA-4, Tra-1-60, Tra-1-80, though none of these markers, in 
isolation, is exclusively expressed by undifferentiated hESCs [1]. 
Rather, their presence as a group is associated with the undifferentiated 
state of hESCs. The unrestricted plasticity and undifferentiated state of 
pluripotent hESCs remain poorly understood at the molecular level. 
For mouse ESCs, the cytokine-dependent LIF/Stat3 pathway and the 
cytokine-independent Nanog pathway are involved in the maintenance 
of pluripotency [2-4]. Both pathways require the sustained expression 
of Oct-4 in mouse ESCs [2-4]. In embryogenesis, only cells in the ICM 
express Oct-4. Loss of Oct-4 expression at the blastocyst stage causes 
these cells to differentiate into extraembryonic lineages, while Oct-
4 expression insures embryonic germ layer assignment and lineage 
differentiation [2-4]. However, human and mouse embryonic stem 
cells (ESCs) actually express opposite markers and require distinct 

conditions for maintenance and differentiation [5,6]. Unlike mouse 
ESCs, the maintenance of undifferentiated hESCs does not require 
LIF and the LIF/Stat3 signaling pathway, suggesting that an entirely 
different regulatory system might be employed in human [7,8]. 

The eukaryotic genome is packaged into a nucleoprotein complex 
known as chromatin, in which the DNA helix is wrapped around an 
octamer of core histone proteins to form a nucleosomal DNA structure 
[9,10]. Packaging of the eukaryotic genome into chromatin confers a 
higher order of epigenomic structure and control over the unfolding 
of developmental process, which goes beyond what might be predicted 
based solely on profiling a cell’s genomic or proteomic patterns [9,10]. 
Recent studies have begun to resolve the interface between chromatin 
and transcription regulation in ESC maintenance [11-19]. Chromatin 
is a highly dynamic structure regulated by chromatin remodeling 
processes that include: 1) covalent modification of histones and 
DNA by enzymatic activities and 2) ATP-driven DNA/nucleosome 
translocation by chromatin remodeling factors, and 3) incorporation 
of alternative histone variants [9-16,20]. In general, histone acetylation 
and histone H3 K4 methylation correlate with a transcriptionally active 
(open) chromatin state, whereas histone deacetylation and histone H3 
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Abstract
Pluripotent Human Embryonic Stem Cells (hESCs) have the unconstrained capacity for long-term stable 

undifferentiated growth in culture and unrestricted developmental capacity. Packaging of the eukaryotic genome into 
chromatin confers higher order structural control over maintaining stem cell plasticity and directing differentiation. We 
recently reported the establishment of a defined culture system for sustaining the epiblast pluripotence of hESCs, 
serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs 
uniformly towards functional lineages. To unveil the epigenetic mechanism in maintaining the epiblast pluripotence 
of hESCs, in this study, the global chromatin dynamics in the pluripotent hESCs maintained under the defined culture 
were examined. This study shows that the genomic plasticity of pluripotent hESCs is enabled by an acetylated 
globally active chromatin maintained by Oct-4. The pluripotency of hESCs that display normal stable expansion 
is associated with high levels of expression and nuclear localization of active chromatin remodeling factors that 
include acetylated histone H3 and H4, Brg-1, hSNF2H, HAT p300, and HDAC1; weak expression or cytoplasmic 
localization of repressive chromatin remodeling factors that are implicated in transcriptional silencing; and residual 
H3 K9 methylation. A dynamic progression from acetylated to transient hyperacetylated to hypoacetylated chromatin 
states correlates with loss-of-Oct4-associated hESC differentiation. RNA interference directed against Oct-4 and 
HDAC inhibitor analysis support this pivotal link between chromatin dynamics and hESC differentiation. These 
findings reveal an epigenetic mechanism for placing global chromatin dynamics as central to tracking the normal 
pluripotency and lineage progression of hESCs.
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K9 methylation correlate with a transcriptionally repressed (closed) 
chromatin state [9-16]. Chromatin modifications serve as important 
epigenetic marks for active and inactive structures, and have emerged 
as the principal epigenetic mechanism in embryonic development 
[11-16]. However, the global chromatin dynamics in maintaining the 
pluripotency of hESCs that display normal stable expansion remain to 
be understood. 

Previously, we have resolved the elements of a defined culture 
system necessary and sufficient for sustaining the epiblast pluripotence 
of hESCs, serving as a platform for de novo derivation of clinically-
suitable hESCs and effectively directing such hESCs uniformly towards 
functional lineages with small molecule induction [21-23]. To unveil 
the epigenetic mechanism in maintaining the epiblast pluripotence of 
hESCs, in this study, the global chromatin dynamics in the pluripotent 
hESCs maintained under the defined culture were examined. This 
study shows that the genomic plasticity of pluripotent hESCs is 
enabled by an acetylated globally active chromatin maintained by Oct-
4. A dynamic progression from acetylated to transient hyperacetylated 
to hypoacetylated chromatin states correlates with loss-of-Oct4-
associated hESC differentiation, as assessed by Oct-4 RNA interference 
(RNAi) and histone deacetylase (HDAC) inhibitor analysis. These 
findings reveal an epigenetic mechanism for placing global chromatin 
dynamics as central to tracking pluripotency and lineage progression 
of hESCs.

Materials and Methods
Culture of undifferentiated hESCs 

The hESC lines WA01 and WA09 (H1 and H9 from WiCell 
Research Institute, passages 30-50) were used in this study. The defined 
culture systems consist of DMEM/F-12 or KO-DMEM (knockout-
DMEM) (80%), Knockout Serum Replacement (KO) (20%), L-alanyl-
L-gln or L-gln (2 mM), MEM nonessential amino acids (MNAA, 1X), 
β-Mercaptoethanol (β-ME,100µM) (all from Invitrogen), human 
purified laminin (Sigma) or laminin/collagen (growth factor reduced 
Matrigel, BD Bioscience) as the matrix protein, and bFGF (basic 
fibroblast growth factor, 20 ng/ml) (PeproTech Inc). The KO can be 
replaced with defined essential factors containing MEM essential 
amino acids (MEAA, 1X), human insulin (20 µg/ml) (Sigma), and 
ascorbic acid (50 µg/ml) (Sigma), in which activin A (50 ng/ml, Sigma), 
human albumin (10 mg/ml, Sigma), and human transferrin (8 µg/
ml, Sigma) were added in order to increase cell survival and maintain 
normal shape and healthy colonies.

Immunofluorescence and deconvolution microscopy
The cells were fixed with 4% paraformaldehyde and blocked in PBS 

containing 0.2% Triton X-100 and 2% BSA. The cells were incubated 
with the primary antibody in 0.1% Triton X-100 in PBS at 4ºC overnight, 
and then with secondary antibody (Molecular Probe/Invitrogen) in the 
same buffer at room temperature for 45 min. After staining with DAPI, 
cells were visualized under an immunofluorescence and deconvolution 
microscope, and quantified by the image analysis software (Olympus). 
Primary antibodies to Oct-4, SSEA-3, Brm, Brg-1, hSNF2H, MOZ, 
HBO1 and PCAF were from Santa Cruz Biotechnology, Inc.; antibodies 
to p300, Tip60, acetylated H3 (K9, 14), acetylated H4 (K5, 8, 12, 16), 
methylated H3 (K9), SIRT1, SUV39H1, HDAC1, 3-7, and Nestin were 
from Millipore/Upstate Biotech.

RNA-mediated interference (RNAi) 

The siRNAs directed against two selected Oct-4 targeting sequences 

were purchased from Qiagen. hESCs maintained in the defined culture 
were transfected with Oct-4 siRNAs at a final concentration of 300 nM 
with RNAi HiPerFect transfection reagent (Qiagen) 3 day after seeding. 
Culture medium was replaced 2 days later and cells were re-transfected 
with siRNAs (300 nM) once more. Cells were allowed to grow to day 7 
and fixed for further analysis.

Manipulation of HDAC activity 

Effective histone acetylation can be artificially increased by inhibiting 
HDAC activity with trichostatin A (TSA) (Sigma). Undifferentiated 
hESCs were seeded under the defined culture conditions and cultivated 
for 3-5 days prior to treatment with TSA (100 ng/ml for 24 hours). 
Controls were similarly treated with DMSO. The cultures were further 
analyzed by immunocytochemistry and/or Western blotting.

Results and Discussion
The pluripotent state of hESCs maintained under the defined 
culture is associated with an acetylated globally active 
chromatin 

To profile the epigenetic global chromatin features associated 
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Figure 1: The pluripotent state of hESCs maintained under the defined 
culture is associated with an acetylated chromatin. (A) High level of 
expression and nuclear localization of acetylated histone H3 (acH3, green) 
in undifferentiated hESCs, as indicated by Oct-4 (red) expression, inside the 
colony, and significantly reduced immune-reactivity of differentiated cells 
outside the colony. (B) High level of expression and nuclear localization of 
acetylated histone H4 (acH4, green) in undifferentiated hESCs, as indicated 
by Oct-4 expression, inside the colony, and significantly reduced immune-
reactivity of differentiated cells outside the colony. (C) Moderate histone H3 
K4 methylation (meH3K4, red) and H3 K27 methylation (meH3K27, green), 
and undetectable histone H3 K9 methylation (meH3K9, red) in hESCs 
maintained under the defined culture. All cells are shown by DAPI staining 
(blue). High-resolution microscopic images in the bottom panel reveal cel-
lular localization patterns.
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with the epiblast pluripotent state of hESCs, we performed immuno-
analysis of chromatin modifications on hESC colonies maintained 
under the defined culture [21-23]. The hESC colonies appear to have 
a constitutive developmental dynamic. The undifferentiated hESCs 
maintained under the defined culture form the typical tightly packed 
colonies of small compact cells that are Oct-4 positive, while large 
differentiated cells migrate outside the colonies and become Oct-4 
negative (Figure 1A, 1B). We observed high levels of expression and 
nuclear localization of acetylated histone H3 and H4 in Oct-4-positive 
undifferentiated hESCs inside the colony, suggesting an acetylated 
active (open) chromatin state in the pluripotent hESCs (Figure 1A, 1B), 
consistent with previous observation for hESCs maintained on feeders 
[12,13]. Conversely, in the Oct-4-negative differentiated cells outside 
the colony, immune-reactivity for acetylated histone H3 and H4 was 
significantly reduced, suggesting a hypoacetylated repressive (closed) 
chromatin in the differentiated cells (Figure 1A, 1B). In addition, 
we detected moderate histone H3 K4 methylation and H3 K27 

methylation in hESCs maintained under the defined culture (Figure 
1C), consistent with previous observations for their involvement in 
silencing developmental genes in hESCs [13-15]. However, we did not 
observe histone H3 K9 methylation in hESCs maintained under the 
defined culture (Figure 1C), a chromatin modification implicated in 
transcriptional repression during development [24-26]. 

Further, we observed high levels of expression and nuclear/
perinuclear localization of the ATP-dependent chromatin-remodeling 
factor Brg-1 and hSNF2H in Oct-4-positive undifferentiated hESCs 
inside the colony, suggesting active chromatin remodeling in the 
pluripotent hESCs (Figure 2A, 2B). Conversely, in the Oct-4-negative 
differentiated cells outside the colony, immunoreactivity for these 
factors was significantly reduced (Figure 2A, 2B). Chromatin remodeling 
factors are ATP-utilizing motor proteins that mediate the interaction 
of proteins with nucleosomal DNA by DNA/nucleosome-translocation 
[27]. Brg-1 is a subunit of the Swi/Snf chromatin remodeling complex 
implicated in the regulation of cellular proliferation and as a tumor 
suppressor; while hSNF2H is a human homolog of the ISWI family 
of chromatin remodeling proteins [28,29]. By contrast, we observed 
weak expression of chromatin remodeling factor Brahma (Brm) and 
cytoplasmic localization of chromatin remodeling factor Mi-2 in the 
pluripotent hESCs (Figure 2C, 2D). Brm is a chromatin-remodeling 
factor implicated not only in histone H3 K9 methylation and 
transcriptional silencing, but also in neural differentiation and mouse 
embryonic development [30-32]. Mi-2 is an integral component of a 
nucleosome remodeling and deacetylation complex (NURD) [33,34]. 
Therefore, lack of Brm expression and cytoplasmic localization of Mi-
2, suggestive of being inactive, in the pluripotent hESCs are consistent 
with their acetylated active chromatin state. 

Analysis of histone acetyltransferases (HATs) revealed high level of 
expression and nuclear localization of p300, cytoplasmic localization of 
Tip60, PCAF, Moz, and weak expression of HBO-1 in Oct-4-positive 
undifferentiated hESCs inside the colony (Figure 3A). p300 and PCAF 
are transcriptional co-activators involved in a variety of signaling 
pathways, including Notch, one of the highly conserved in development 
and previously implicated in the self-renewal of haematopoietic stem 
cells [35]. Tip60, Moz, and HBO-1 are human homologues of MYST 
family of acetyltransferases implicated in transcriptional silencing [36]. 

Having assessed the presence of histone modification activities 
that would promote an acetylated chromatin, we next examined the 
expression pattern of those that might provide a balance, including 
histone deacetylase (HDAC) and histone methyltransferase (HMT), 
in the pluripotent hESCs maintained under the defined culture. 
Among the class I HDACs tested, we observed strong expression and 
nuclear localization of HDAC1, and weak expression of HDAC3 in 
the pluripotent hESCs (Figure 3B). HDAC1 is a general maintenance 
histone deacetylase that sustains global transcription at a basal level 
[37]. Among the class II HDACs tested, which contain a group of 
large molecules homologous to yeast Hda1 and which are tissue-
specific [37], we observed mostly cytoplasmic localization of HDAC4, 
HDAC5, HDAC6, and HDAC7 in the pluripotent hESCs, suggestive 
of being inactive (Figure 3C). Although the class III NAD-dependent 
histone deacetylase SIRT1 and the H3 K9 histone methyltransferase 
(HMT) SUV39H1, which are involved in histone H3 K9 methylation 
and transcriptional silencing in development [9,24-26], were expressed 
in hESCs, their cytoplasmic localization patterns indicated that they 
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Figure 2: The pluripotent state of hESCs is associated with active chro-
matin remodeling factor Brg-1 and hSNF2H. (A) High level of expression 
and nuclear localization of Brg-1 (green) in undifferentiated hESCs, as indi-
cated by Oct-4 (red) expression, inside the colony, and significantly reduced 
immune-reactivity of differentiated cells outside the colony. (B) High level of 
expression and mostly nuclear localization of hSNF2H (green) in undifferenti-
ated hESCs, as indicated by Oct-4 expression, inside the colony, and sig-
nificantly reduced immune-reactivity of differentiated cells outside the colony. 
(C) Weak expression of Brm (green) in undifferentiated hESCs, as indicated 
by Oct-4 expression, inside the colony. (D) Mostly cytoplasmic localization 
of Mi-2 (green) in undifferentiated hESCs, as indicated by Oct-4 expression, 
inside the colony, and significantly reduced immune-reactivity of differentiated 
cells outside the colony. All cells are shown by DAPI staining (blue). High-
resolution microscopic images in the bottom panel reveal cellular localization 
patterns.
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remained mostly inactive in the pluripotent hESCs as well (Figure 3D, 
3E). 

The pluripotence of undifferentiated hESCs maintained under 
defined culture system for a prolonged period (>30 passages) was 
further affirmed by teratoma formation following injected into SCID 
mice. Histological analysis of the resulting teratomas confirmed 
the presence of tissues of all three embryonic germ layers, including 
pigmented and neural tissue (ectoderm); gut epithelium (endoderm); 
adipose cells and vascular endothelium, cartilage, smooth muscle and 
connective tissue (mesoderm) (Figure 4), indicating that the hESCs 
retain pluripotent under the defined culture system.

Taken together, these observations suggest that the pluripotent 
state of hESCs is associated with an acetylated globally active chromatin 
that would maintain their ability to replicate and respond to inductive 

signals in the milieu and provide the molecular foundation for the 
normal pluripotency of hESCs. 

A dynamic progression from acetylated to transient hyper-
acetylated to hypo-acetylated chromatin states correlates 
with loss-of-Oct4-associated differentiation 

The hESC colony is a structure that displays spontaneous early 
differentiation processes that can be divided into three zones (Figure 
5A), hence providing a simple system for assessing the alterations in 
chromatin state and Oct-4 level that accompany this transition. Zone 1, 
within the core of the colony, contains small compact undifferentiated 
hESCs that are Oct-4-positive, but immune-negative for the cell 
surface marker SSEA-3 and the intermediate filament Nestin (Figure 
5A). Initiation of differentiation typically occurs spontaneously in 
cells towards the periphery, a transitional Zone 2 (those with broader 
peripheries are shown in Figure 5A for demonstrative purpose). Zone 2 
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Figure 3: The pluripotent state of hESCs is associated with p300 and HDAC1. (A) High level of expression and nuclear localization of p300 (red), and cyto-
plasmic localization of Tip60 (green) and Moz (red), and weak expression of HBO-1 (red) in undifferentiated hESCs, as indicated by Oct-4 (red) expression, inside 
the colony. (B) High level of expression and nuclear localization of HDAC1 (green), and weak expression of HDAC3 (green), the class I HDACs, in undifferentiated 
hESCs, as indicated by Oct-4 expression, inside the colony. (C) Mostly cytoplasmic localization of HDAC7 (green), HDAC4 (green), HDAC5 (green), and HDAC6 
(green), the class II HDACs, in undifferentiated hESCs, as indicated by Oct-4 expression, inside the colony. (D) Cytoplasmic localization of SIRT1 (red), the class III 
HDAC, in undifferentiated hESCs inside the colony. (E) Cytoplasmic localization of SUV39H1 (red) in undifferentiated hESCs inside the colony. All cells are shown 
by DAPI staining (blue). High-resolution microscopic images in the bottom panel reveal cellular localization patterns.
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cells become flattened and begin to express SSEA-3 and Nestin (Figure 
5A). Further differentiation begins to become stabilized in cells that 
have migrated beyond the colony -- Zone 3 – composed of large cells 
that are Oct-4- and SSEA-3-negative but continue to express Nestin 
robustly (Figure 5A). It is in Zone 3 that differentiation in cells begins 
to become stabilized. 

A decreased level of Oct-4 expression was observed in cells in 
the transitional Zone 2, and, decreasing expression of Oct-4 was 
associated with transiently enhanced H3 and H4 acetylation, and 
hence hyperacetylation (Figure 5A), coincident with the enhanced 
expression of the HAT p300, as confirmed by quantitative intracellular 
imaging analysis (Figure 5A). Therefore, decreasing expression of 
Oct-4 may itself trigger hyperacetylation and initiate differentiation 
by allowing alterations in chromatin state. Complete suppression of 
Oct-4 occurred in Zone 3 cells outside the colony, which, in contrast, 
displayed dramatically reduced H3 and H4 acetylation and p300 
expression (Figure 5A), indicating now a hypoacetylated repressive 
chromatin structure. 

These observations suggest a dynamic whereby hESCs in their 
undifferentiated state (Zone 1) are associated with an acetylated active 
chromatin governed by Oct-4; that transient histone hyperacetylation 
occurs with the decreasing expression of Oct-4 and the initiation of 
differentiation (Zone 2), which may then trigger Oct-4 independent 

Figure 4: Assessing pluripotency of hESCs maintained under the de-
fined culture with teratoma formation. Undifferentiated hESCs after pro-
longed propagation in the defined system were injected into SCID mice. 
Histological analysis of the resulting teratomas confirmed the presence of 
tissues of all three embryonic germ layers (A-C), including pigmented and 
neural tissue (D) (ectoderm); gut epithelium (E) (endoderm); adipose cells 
and vascular endothelium (F), cartilage (G), smooth muscle and connective 
tissue (H) (mesoderm). Magnification: (A) and (B), 4X; (C), 10X; (D-H), 20X.
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Figure 5: Loss-of-Oct-4 associated hESC differentiation is mirrored by a dynamic progression from acetylated to transient hyperacetylated to hypoacety-
lated chromatin states. (A) The hESC colony structural zones of spontaneous differentiation. The small compact cells at the core of the colony (Zone 1 [Z-1]) are 
SSEA-3 (red) and Nestin (green) negative; cells at the periphery (Zone 2 [Z-2], delineated by double-headed white arrows) begin to express SSEA-3 and Nestin; and 
cells migrated beyond the colony (Zone 3 [Z-3]) continue to express Nestin but lose SSEA-3 expression. Decreased expression of Oct-4 (red) in transitional Zone-2 
cells is associated with transiently increased H3 acetylation (acH3, green). Analysis of protein intensities from quantitative intracellular imaging confirms that the de-
creased expression of Oct-4 in transitional Zone-2 cells is associated with transiently increased histone acetylation, coincident with enhanced expression of p300. (B) 
Inhibition of HDAC activities results in hESC differentiation. The hESCs maintained under the defined culture were treated with specific HDAC inhibitor trichostatin A 
(TSA); controls were similarly treated with DMSO. Photomicrographs are shown 3 days after removal of the HDAC inhibitor. Inhibition of HDAC activity resulted in the 
extinguishing of Oct-4 expression and the appearance of large differentiated Oct-4-negative cells throughout the colony that began to express Nestin (red) and phal-
loidin (green), and show significantly reduced immune-reactivity to acetylated histone H3 (acH3, green) and acetylated histone H4 (acH4, green). All cells are shown 
by DAPI staining (blue). White arrows indicate the colony edge.
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recruitment of HDAC complexes to chromatin and hence deacetylation 
leading to the compaction of hypoacetylated nucleosomes into a 
repressive chromatin structure such that progress towards a more 
differentiated state can proceed in Zone 3.

Altering the balance between acetylation and deacetylation 
with HDAC inhibitor and Oct-4 RNAi supports the pivotal 
link between chromatin dynamics and hESC differentiation

The observations above suggested that HDAC activities were 
required for maintaining the undifferentiated state of hESCs by 
balancing HAT action and preventing hyperacetylation, a balance 
possibly mediated by Oct-4. To test this notion, we experimentally 
manipulated HDAC activities by using the specific HDAC inhibitor 
(HDACi): trichostatin A [TSA]. Treating undifferentiated hESCs 
maintained under the defined culture with TSA resulted in dramatic 
differentiation, indicated by the ectopic appearance throughout the 
colony (including in Zone 1) of large Oct-4-negative Zone-3-like 
cells that expressed Nestin and phalloidin and subsequently became 
dramatically hypoacetylated after withdrawal of the HDACi (Figure 
5B). HDAC inhibitors have reportedly distinct stage-specific effects 
on promoting or inhibiting myogenesis, including enhancing Oct-
4 expression in myogenic cells, mirrored by changes in the state of 
histone acetylation present at a muscle-gene enhancer [38,39].

Having observed the link between a change in histone acetylation 
and hESC differentiation (Figure 5), we next attempted to link 
loss-of-Oct-4-function itself to the triggering of these chromatin-
mediated dynamics. Oct-4 is a DNA-binding factor to a variety of 
non-specific AT-rich sequences, however, its role in regulating the 
transcription of specific genes has barely been demonstrated [2,17,40]. 
Unlike most transiently expressed transcriptional factors, Oct-4 is 
an abundant nuclear protein associated specifically with hESCs in 
their undifferentiated state [2,40]. Of new interest, we observed that 
changes in Oct-4 expression level appeared to promote differentiation 
by allowing alterations in chromatin state (Figure 5). This evidence 
suggested that Oct-4 might actually function not as a specific promoter-
binding transcription factor – the convention view of Oct-4 that has 
proven inadequate to interpreting its role in maintaining pluripotency 
and ensuring lineage differentiation [2,17,40] -- but rather as a global 
DNA-binding regulator for maintaining the pluripotent chromatin 

state -- by recruiting other chromatin-remodeling activities. To further 
decipher the function of Oct-4 in chromatin-mediated dynamics 
described above, undifferentiated hESCs maintained under the defined 
culture were transfected with small double-stranded RNAs (siRNA) 
(the efficacy and specificity of the RNAi having been affirmed by 
appropriate knock-down of mRNA, based on RT-PCR, and of protein, 
based on Western and immunocytochemical analysis). The Oct-4 
siRNA effectively reduced Oct-4 expression in cells inside > 90% of the 
hESC colonies, compared to persistent Oct-4-positivity in cells inside 
> 70% of control colonies (Figure 6). Oct-4 knockdown resulted in a 
dramatic reduction of HDAC1 but not HAT p300 (Figure 6), a condition 
that would serve to tip the balance towards hyperacetylation. Indeed, 
the Oct-4 knocked-down cells displayed strong H3 and H4 acetylation, 
and strong expression of Brg-1 and hSNF2H, which, in turn, coincided 
with the induction of differentiation within these colonies as indicated 
by the appearance of large flattened cells and expression of the 
differentiation marker Nestin (Figure 6), recapitulating the emergence 
of hyperacetylated transitional Zone-2-like cells in hESC spontaneous 
differentiation (Figure 5A). These observations further supported the 
view that Oct-4 might recruit HDAC1 to preserve a globally active 
chromatin state and maintain a balanced level of histone acetylation 
to sustain the pluripotent state in hESCs, and that changes in Oct-4 
expression appeared to promote hESC differentiation by allowing 
alterations in chromatin state. 

Taken together, these results support a dynamic linking change 
in acetylation with loss-of-Oct4-associated hESC differentiation. 
Although undifferentiated hESCs are associated with an acetylated 
active chromatin structure, HDAC activities appear to be required for 
maintaining the pluripotent state by forestalling hyperacetylation and 
the onset of differentiation (Figures 5, 6). Histone hyperacetylation, 
coincident with decreasing Oct-4, may trigger the initiation of 
differentiation (Figures 5, 6). Further Oct-4 independent deacetylation 
leads to the stabilization of the differentiated state via the compaction 
of hypoacetylated nucleosomes into a repressive chromatin structure 
(Figure 5).

An role for Oct-4 in maintaining pluripotence: orchestrating 
global active chromatin-remodeling

These observations suggest a chromatin remodeling model that 
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Oct-4 might function as a global chromatin-remodeling factor in 
maintaining the pluripotent chromatin state in undifferentiated 
hESCs (Figure 7). In this model, the genomic plasticity of pluripotent 
hESCs is enabled by a highly dynamic, globally-active chromatin 
that reflects a balance between acetylating and deacetylating forces. 
Oct-4 governs this equilibrium and, hence, insures an acetylated 
active chromatin state throughout the entire pluripotent genome by 
recruiting active chromatin remodeling factors. The loss of this balance 
– for example, as a result of a decrease in either Oct-4 or HDAC1 -- 
induces hyperacetylation and the subsequent onset of differentiation. 
Differentiation is then stabilized as histone hyperacetylation becomes 
rapidly reversed by an Oct-4-independent deacetylation process 
that promotes the compaction of hypoacetylated nucleosomes into a 
general repressive chromatin structure. This model offers an expanded 
view of Oct-4’s role in maintaining pluripotency and then directing 
differentiation, and is supported by our experimental manipulation 
of Oct-4 expression (via siRNA) and of the equilibrium between 
acetylating and deacetylating processes (via HDAC inhibitor) (Figures 
5, 6). Indeed, such a view better accommodates previous reports that 
Oct-4-associated differentiation is dose-dependent and cannot be 
readily explained as an “on-off” switch [2, 40]. 

This study suggest that the pluripotency of hESCs that display 
normal stable expansion is associated with high levels of expression 
and nuclear localization of acetylated histone H3 and H4, active ATP-
dependent chromatin-remodeling factor Brg-1 and hSNF2H, HAT 
p300, and HDAC1 (Figures 1A, 1B, 2A, 2B, 3A, 3B), suggesting an 
acetylated globally active chromatin. Consistent with this observation, 
repressive chromatin remodeling factors that are implicated in 
transcriptional silencing, including SIRT1, SUV39H1, and Brm that 
regulate histone H3K9 methylation [9,24-26], Mi-2 of the deacetylation 
complex (NURD) [33,34], the MYST family of acetyltransferases Tip60, 
Moz, and HBO-1 [36], and the class II tissue-specific HDACs, were 

either localized to the cytoplasm, suggesting they were inactive, or were 
weakly expressed in pluripotent hESCs (Figures 2C, 2D, 3A, 3C-3E). In 
addition, residual H3 K9 methylation was observed in the pluripotent 
hESCs that display normal stable expansion (Figure 1C). Residual 
repressive chromatin remodeling implicated in chromatin silencing, 
including H3 K9 methylation, might be essential for stabilizing the 
pluripotent state of hESCs at a normal developmental stage. In fact, 
aberrant H3 K9 methylation at embryonic stage has been associated 
with DNA hypermethylation and cell malignant transformation in 
abnormal pluripotent embryonic carcinoma cells [41,42]. Collectively, 
these findings reveal an epigenetic mechanism for placing global 
chromatin dynamics as central to tracking the normal pluripotency 
and lineage progression of hESCs.

The transitions between distinct chromatin states, from the open 
acetylated chromatin of the pluripotent hESC to the more compact 
deacetylated chromatin of the differentiated cells, suggest a self-
regulated complex dynamic determined by a progression of global 
chromatin remodeling as commitment proceeds. Furthermore, an 
appreciation of various global chromatin modification marks in 
correlation with these chromatin states might be used to determine 
the developmental stage of the human stem cell, and help predict the 
regenerative utility of a plastic human cell along the continuum of a 
progressive fate restriction for a particular disease. 
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