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Editorial
DDMC/sncRNAs (Diethylaminoethyl-Dextran-Methacrylic acid 

Methyl ester Copolymer/small non-coding RNAs) complex is a new tool for 
the anticancer treatment. It consists of DDMC polymer delivery system with 
sncRNAs as passengers. The main function of DDMC carrier is supporting 
of the entrance of sncRNAs in the nucleus/cytoplasm and protection 
them from rapid biodestruction by DNases and RNases in plasma and 
cellular matrix. After getting inside the nucleus, sncRNAs epigenetically 
induce and promote cancer cells genome modifications, and finally 
result in cancer cell transformation. In primary investigations were used 
complexes by DDMC/miRNAs (microribonucleic acid and piRNAs 
(piwi-interacting ribonucleic acid). Its slow velocity of biodegradation 
helps to prolong epigenetic regulation of cellular genome by sncRNAs, 
near 40 days in in vitro experiments.

DDMC carrier is very stable in vivo and has EPR (Enhanced 
permeation and retention) effect and avoiding RES (reticuloendothelial 
system). Mechanisms of protection activity of DDMC carrier for 
sncRNAs and supporting of low velocity of biodegradation are mainly 
owe to its stable properties. This may be due not only to the coulomb 
force between the phosphoric acid of RNA and the diethyl-amino-
ethyl(DEAE) group of DDMC but also a force from the multi-inter-
molecule hydrogen bond and a hydrophobic force from the hydrophobic 
domains of the graft poly(MMA) in DDMC. These lead us to conclude 
that DNA/RNA condensation by a coil-globule transition for DDMC, 
thus make it possible to obtain higher transfection efficiency in the cell 
and nucleus. The new type of polymer carrier have good RNA protection 
properties, high transfection efficiency index (11-30 days) and it’s rate is 
70-98% in different cell types, low toxicity of DDMC/sncRNAs complex 
after treatment in vitro and in vivo experiments [1]. After entrance
into the cytosol, DDMC/sncRNAs complexes are partially biodegrade
and small part of sncRNAs such as miRNAs can react with mRNA in
cellular matrix. In cytosol, it is beginning primary effects after action of
miRNAs, which were incorporated in complex DDMC/sncRNAs. These 
events result in modification of mRNA on the post-transcriptional level 
(Figure 1). MiRNAs trigger gene comes to silencing by the mean of
RNA interference mechanisms. The functions of oncogenic miRNAs
are suppressed after using of particular antago-miRs for oncogenic
miRNAs, and vice versa, the action of anti-oncogenic miRNAs is
promoted after treatment with anti-oncogenic miRNAs. In previous
studies, were identified different miRNAs or antago-miRs, which
regulated apoptotic program of cancer cells. For example, miR-15 and
miR-16 expression modify the expression of Bcl2, miR-26 induced
apoptosis in liver cancer cells, and miR-29b promote apoptotic program 
in AML cells. Treatment with antago-miR for miR-15, miR-16, and let-
7 result in activation of apoptosis in cancer cells, treatment of cells with
miR-195, miR-24-2 and miR-365 led to induction of apoptosis in breast 
cancer cells. MiR-34 is apoptosis inducer in liver cancer cells. Antago-
miR-155 induces caspase 8/9 activity and miR-152 activates apoptosis
and inhibits proliferation in lung cancer cells [2-11].

Full reprogramming of cancer cell genome achieved after 
entrance of DDMC/sncRNAs complex in the nucleus and complex 
biodegradation. In the nucleus, it begins action of miRNAs and 
piRNAs, which are slowly disengaging from the binding with DDMC. 
PiRNAs trigger deep re-construction of genetic program of cell. The 
main function of piRNAs is supporting of cellular genome stability. The 
main mechanisms of piRNAs action are mobile genomic transposable 
elements (TE) repression (LINE and SINE are natural pathogenic 
factors in cancers) [12]. PiRNAs suppress of NAHR  non-allelic 
homologous recombination and they protect genome stability by 
expression H3K9me, and histone modification (suppression of position 
effect variegation) [13-15].

Besides, in the complex is included miRNAs, which trigger 
differentiation of cells. In previous investigations were confirmed 
the role of different miRNAs in cellular differentiation [16-23]. After 
releasing from the DDMC/sncRNAs complex, these miRNAs in co-
operation with piRNAs switch-on complex mechanisms of full cellular 
transformation. Finally, cancer cells transform into physiologically 
non-cancerous cells.

Remarks
DDMC/SncRNAs helps to prolong epigenetic regulation of cellular 

genome by sncRNAs, near 40 days in in vitro experiments owing to 
disturb its biodegradation. In this periods, DDMC/SncRNAs as one 
body epigenetically will induce and promote cancer cells genome 
modifications. At this time, Gene control by DDMC/SncRNAs is 
shown by Hill Eq. and will take “Robustness feedback Control Systems” 
sustainably as bellows;

General form of Hill Eq. is
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Here, Kn < Xn, β is active Allosteric factor. If X is inlet signal and Y 
is outlet signal in tumor microenvironment. 

Then, ( ) , ( )F X F X Yβ α= = , and ( )F X dY dt∆ =  at α>0, β>0 in 
allosteric regulation in this tumor micro environment.
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The differential variation of ( )F X Yβ α∆ = − , then 

dY dt Yβ α= −                (2)

( ) ( )( )1 expY tβ α α= − −                 (3)

Outlet signal Y in Eq.(1) limits to β/α as α>0.
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Figure 1: Mechanisms of cancer cell transformation after treatment with DDMC/sncRNAs complex.
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