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Commentary
The development of novel targeted agents aimed at selective

inhibition of dysregulated oncogenic pathways has been a major focus
and advancing area in translational oncology research. In acute
myeloid leukemia (AML) the first successes have been in targeting
mutations in the receptor tyrosine kinase FLT3. Small molecule
inhibitors targeting FLT3 have been in clinical use for the past two
decades with many patients showing favorable initial responses;
however, development of resistance occurs almost universally. Here we
describe mechanisms of resistance to FLT3 inhibitors and ongoing
studies aimed at overcoming it.

Mutations in FLT3 (FMS-like tyrosine kinase 3) are the most
common genetic alteration in patients with AML occurring in
approximately 30% of adult and 15% of pediatric patients at the time of
diagnosis [1-3]. Primarily mutations consist of internal tandem
duplications (ITD) of the juxtamembrane domain leading to
constitutive receptor activation [4]; however, in 5-7% of patients
activating lesions present at diagnosis are due to point mutations in the
kinase domain [5,6] and mutations are also less commonly observed in
the juxtamembrane domain [7-9]. The presence of an ITD mutation
confers a poorer prognosis, particularly in the pediatric population. In
one study, overall survival decreased from 44% in patients without a
mutation to 7% for those with a FLT3-ITD mutation [3]. The
prognostic significance of point mutations is less well defined [2,3,6].
Interestingly, while these mutations result in constitutive activation of
the FLT3 receptor, the downstream effects are distinct from those
observed following ligand-stimulation of wild-type FLT3 (FLT3-WT)
[10,11]. FLT3-WT is normally expressed in hematopoietic progenitors
and promotes proliferation and survival through activation of the
downstream RAS/MEK/ERK and PI3K/AKT pathways. In contrast,
ITD mutations contribute to leukemogenesis by preferentially inducing
activation of STAT5 resulting in aberrant cell growth [10,11] and
transcriptional repression of C/EBPα and PU.1, which mediate a block
in myeloid differentiation [10-13].

Preclinical studies demonstrating robust anti-leukemic effects of
FLT3 inhibition lead to development of ATP-competitive tyrosine
kinase inhibitors (TKIs) targeting mutated FLT3 for clinical use. First
generation agents with activity against FLT3 such as sunitinib,
sorafenib, and midostaurin were multi-kinase inhibitors that also
targeted related receptors such as PDGFR and KIT. Given the multi-
kinase nature of these compounds, their use was limited due to poor
potency against FLT3 and increased toxicity due to off-target activity.
To address these concerns, the second-generation TKI, quizartinib
(AC220) was developed with increased potency against and selectivity
for FLT3. Initial responses to treatment with single-agent quizartinib

were promising with 44% of relapsed or refractory FLT3-ITD AML
patients achieving a composite complete remission in a phase II study
[14]; however, responses were not durable and the impact on survival
was limited with a median duration of response of 11 weeks indicating
rapid development of resistance. Clinical use of quizartinib has also
been limited by its off-target inhibition of c-KIT which has led to
unacceptable myelosuppression [15].

Further analysis of patient samples to better understand
mechanisms of relapse revealed secondary point mutations in the FLT3
kinase domain in patients who relapsed during quizartinib
monotherapy.

The most common quizartinib-resistance conferring mutations
occur at the D835 and F691 loci and confer cross-resistance to the
first-generation inhibitor sorafenib [16-19]. Mutations at D835 occur
in the FLT3 activation loop and serve to stabilize the protein in the
active “DFG-in” conformation thereby preventing binding of type 2
TKIs such as quizartinib and sorafenib [16]. F691 is in the ATP-
binding pocket of FLT3 and is a conserved gatekeeper residue. Similar
mutations, such as T790M in EGFR [20] and T315I in BCR-ABL [21],
have been well described as a mechanism of TKI resistance and
substitute of a larger residue for a smaller one, thereby preventing
binding of the inhibitor. Interestingly, while the D835 and adjacent
I836 loci are the predominant site for FLT3 activation loop mutations
in TKI-naïve AML [5,6], F691 mutations have not been described in
the absence of the selective pressure of aninhibitor. The presence of a
primary mutation at these sites is relevant as they confer the same
differential sensitivity to FLT3 TKIs as the secondary mutations [22].
In the rare cases of point mutations in the juxtamembrane domain,
sensitivity to inhibitors has not been well-studied but in one reported
case sorafenib mediated initial but not sustained anti-leukemic effects
in the presence of a L576Q mutation [9].

Development of secondary point mutations represent the best
characterized mechanism of acquired resistance to FLT3 inhibition;
however, resistant FLT3-ITD cells lacking secondary point mutations
have been frequently identified [23] indicating that other mechanisms
such as protection in the bone marrow niche and/or activation of
bypass signaling pathways may account for the majority of cases. In the
clinic, it has been anecdotally noted that FLT3 inhibitors induce a
much more rapid clearance of leukemic blasts from the peripheral
blood than from the bone marrow [24] leading to studies aimed
towards identifying stromal-derived mediators of resistance. One
consistent finding has been persistent activation of ERK in response to
FLT3 inhibition in the presence of bone marrow stroma [24,25].
Although the specific mediators of this persistent activation are not
fully understood, it has been proposed to occur through upregulation
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of the ligands fibroblast growth factor 2 (FGF2) and FLT3 ligand (FL).
FL is upregulated in patients in response to chemotherapy [26] and the
addition of exogenous FL or FGF2 blocks ERK inhibiton in response to
quizartinib in AML cell lines [24]. As previously noted, the ERK
pathway is preferentially regulated by FLT3-WT compared to mutated
FLT3 and due to the characteristic block in myeloid differentiation in
AML blasts, FLT3-WT is aberrantly expressed in the majority of
patient samples and is often co-expressed with the mutant allele.
Aberrant expression of FLT3-WT may therefore be responsible for
ligand-mediated signaling and protection even in the presence of a
FLT3 inhibitor. Indeed, the FLT3 inhibitors quizartinib and sorafenib
preferentially inhibit FLT3-ITD over FLT3-WT and their efficacy is
abrogated upon co-expression of the two molecules [27]. This
mechanism may also explain the observation that FLT3-ITD allelic
burden is a positive predictor of cytotoxicity in response to FLT3
inhibition [28]. These data outline a mechanism of resistance to FLT3
inhibition in the bone marrow microenvironment by which stromal-
derived factors such as FL and FGF2 mediate persistent activation of
FLT3 and downstream signaling pathways potentially through
activation of FLT3-WT.

Activation of parallel signaling pathways independent of the FLT3
receptor also plays a role in resistance to FLT3 inhibition. For example,
upregulation of the receptor tyrosine kinase AXL has been implicated
in resistance to TKIs in a number of tumor types [29-31]. Similarly,
FLT3-ITD AML cells demonstrate constitutively active AXL and AXL
inhibition leads to decreased FLT3 phosphorylation and induction of
leukemia cell death [32]. Conversely, FLT3 inhibition leads to
upregulation and activation of AXL and the degree of baseline AXL
activity may predict sensitivity to the FLT3 inhibitor midostaurin.
Moreover, AXL knockdown resensitized resistant FLT3-ITD cell lines
to the effects of FLT3 inhibition, implicating AXL as a critical mediator
of resistance [33]. AXL signals through many of the same downstream
oncogenic pathways as FLT3 [34] so may serve as a bypass mechanism
that allows leukemia cells to survive FLT3 inhibition.

The above findings highlight some of the challenges to successful
translation of FLT3 inhibition to clinical application. A number of new
inhibitors and dual inhibition strategies have been developed to
overcome these barriers. Two of the newer generation FLT3 inhibitors
that have advanced the furthest in clinical development are crenolanib
and gilteritinib. Crenolanib is a type 1 TKI that is highly selective for
FLT3 and PDGFR and retains a high level of activity against D835
mutant FLT3 and to a lesser degree against the F691 gatekeeper
mutation [35,36]. In clinical trials single agent crenolanib has shown
the best efficacy in FLT3 TKI naïve patients with 23% of patients
achieving a complete remission with incomplete hematologic recovery
(CRi); however, duration of response was again brief with a median
time of 13 weeks [37]. Gilteritinib (ASP2215) is a newly developed dual
FLT3/AXL inhibitor specifically designed to inhibit FLT3-ITD. In
preclinical studies gilteritinib potently inhibited both ITD and
activation loop mutations and have minimal activity against c-KIT and
thus potential to limit the adverse myelosuppression seen with other
inhibitors [38]. Additionally, as gilteritinib also inhibits AXL it is
hypothesized to have improved anti-leukemic effects by preventing
AXL activation as a this bypass mechanism; however, gilteritinib is
even less potent against the gatekeeper mutation than crenolanib so
patients would be still be susceptible to development of resistance by
acquired mutations at this site. In a recently published phase 1/2 trial
patients with mutated FLT3 (either ITD or activation loop) treated
with gilteritinib monotherapy had a 41% composite complete
remission with a mean duration of response of 20 weeks [39]. Further

trials of crenolanib and gilteritinib alone and in combination with
cytotoxic chemotherapy are ongoing and will be necessary to
determine whether these new inhibitors are superior to the previous
generation. Finally, we have developed MRX-2843, a novel small
molecule dual inhibitor of MERTK and FLT3 [40]. MERTK and AXL
are both members of the TAM family receptor tyrosine kinases and
MERTK has been validated as a target in AML and other hematologic
malignancies [41,42]. MRX-2843 has high potency for both MERTK
and FLT3, is therapeutically effective in murine xenograft models with
FLT3-ITD, D835, and F691 mutations [40], has received the Food and
Drug Administration Investigational New Drug status and will be the
first-in-class MERTK inhibitor used in clinical trials. Ongoing
preclinical studies are aimed at determining whether MERTK plays a
role similar to AXL in mediating resistance to FLT3 inhibition.

The ongoing struggles to translate the preclinical promise of FLT3
inhibition into successful clinical use underscore the importance of a
deep understanding of the biology of target receptors when developing
translational strategies. As it is unlikely that FLT3 inhibition alone will
be sufficient to induce durable remissions, ongoing research should be
aimed at devising rational combination strategies with other targeted
agents based upon understanding of the molecular mechanisms at
play. Other promising preclinical lines of investigation include
combination with MEK inhibitors [24] or targeting of the bone
marrow stromal interactions by CXCR4 inhibition [43,44]. Finally,
most of the clinical trials to date have been performed in heavily
pretreated adult patients with relapsed disease who are less likely to
demonstrate any prolonged benefit from newly developed therapies
and may have drastically altered drug metabolism as a confounding
factor that diminishes the generalizability of the studies. Future studies
should emphasize on the up-front use of FLT3 inhibitors in newly
diagnosed and pediatric patients to maximize our understanding of
their use in these critical populations.
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