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In this post-genome era of advanced high-throughput DNA/RNA 
sequencing technologies, information may no longer be a bottleneck 
to understand and tackle complicated genetic diseases such as cancer. 
What is still lacking, however, is an efficient, reliable, and easy tool to 
precisely modify the cellular genome for functional genome annotation, 
disease modeling, and possibly even corrective gene therapy.

Recently, an efficient, RNA-guided, site-specific DNA cleavage tool, 
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), 
and the CRISPR-associated (Cas)9 system has been developed from 
the Streptococcus pyogenes type II CRISPR adaptive immune system [1] 
and has attracted much attention for its potential to transform genome 
engineering and regulation.

In bacteria and archaea, CRISPR loci usually consist of three 
components: a cluster of cas genes and two non-coding RNA elements, 
trans-activating CRISPR RNA (trascrRNA) and a characteristic array 
consisting of repetitive sequences flanking unique spacer sequences 
(Figure 1A). Each spacer is derived from invading phage or plasmid 
DNA. Transcription of the array yields individual CRISPR RNAs 
(crRNAs, consisting of spacer-repeat fragments), which localizes the 
crRNA: tracrRNA: Cas9 complex to target DNA where the effector 
Cas9 nuclease cuts both strands of DNA (double-strand breaks, DSBs) 
that matches the crRNA, and consequently, leads to the inactivation 
of invading DNA [2-4]. In mammalian and other cells, CRISPR-Cas 
induced DSBs can be repaired through two endogenous mechanisms: 
the non-homologous end joining (NHEJ) method is generally used for 
the creation of a frameshift deleterious mutation, while the homology 
directed repair (HDR) is preferred for the introduction of a specific 
point mutation or addition of genes of interest. This precision targeting 
feature of the CRISPR-Cas9 system is of great interest for the study of 
biological processes [5].

What makes the CRISPR-Cas9 system even more attractive is the 
ease, high efficiency, and versatility of the technology. To simplify 
the CRISPR-Cas9 system, Jinek M et al. synthesized a single RNA 
chimera of dual-tracrRNA:crRNA (single-guide RNA, sgRNA), and 
successfully used it to direct sequence specific Cas9 double-strand DNA 
cleavage in a test tube in 2012 [6]. This study suggested the potential 
application of the CRISPR-Cas9 system for RNA-programmable 
genome engineering. In February 2013, two groups simultaneously 
demonstrated that the RNA-guided CRISPR-Cas9 system functions 
in both human and mouse cells and that multiplex editing of target 
genes is feasible upon introduction of multiple sgRNAs at the same 
time [6,7]. Shortly after these two milestone papers were published in 
Science, the CRISPR-Cas9 system was successfully used for genome 
modifications in other organisms such as plants [8-10], Caenorhabditis 
elegans [11-13], Drosophila [14,15], Zebrafish [10,15-17], and Xenopus 
tropicalis [18,19], suggesting that the CRISPR-Cas9 system may have 
broad applications in the biomedical sciences.

More recently, the CRISPR-Cas9 system was modified to create 
a more efficient, one-step, gene targeting technology. By co-injecting 
Cas9 mRNA and sgRNAs of interest into cells, Dr. Zhang’s group was 
able to simultaneously target five genes in mouse embryonic stem 
cells, and mice generated from zygotes co-injected with Cas9 mRNA 
and sgRNAs targeting Tet1 and Tet2 were shown to carry biallelic 
mutations in both genes with an efficiency of 80% [20]. This approach 
has much higher mutation efficiency and a much lower rate of off-
target effects than the zinc-finger nuclease technique [21]. Similarly, 
reporter and conditional mutant mice were generated by this one-step 
co-injection of zygotes with Cas9 mRNA and different sgRNAs as well 
as DNA vectors [22]. Traditional generation of mice with multiple 
gene mutations requires careful breeding over many generations and 
may take 1-2 years. Therefore, this one-step approach to generating 
animals carrying mutations in multiple genes will greatly accelerate 
the in vivo study of gene functions and gene-gene interactions. Given 
that the CRISPR-Cas9 system’s sgRNAs are now much easier to make 
than proteins exploited in zinc finger and TALEN genome engineering 
technologies [23], it is possible to target virtually any gene using the 
CRISPR-Cas9 system, and a genome-wide resource of unique sgRNAs 
that target human exons is now available [7]. 

An additional modification of Cas9 has generated new applications 
of the CRISPR-Cas9 system. The CRISPR-Cas9 system’s genome 
editing function depends on the nuclease activity of Cas9, which cuts 
both strands of target DNA. Two nuclease domains have been identified 
in Cas9 protein, with the Cas9 HNH nuclease domain responsible for 
cleavage of the complementary strand, and the Cas9 RuvC like domain 
responsible for cleavage of the non complementary strand (Figure 1B) 
[5]. Mutagenesis inactivation of its nuclease activity (so called dCas9, 
Cas9N-, or Cas9nuclease-null) [24] retains Cas9’s RNA guided homing 
and DNA binding ability. The sgRNA-dCas9 complex’s specific 
DNA binding interferes with transcriptional elongation and RNA 
polymerase binding and transcription factor binding, and results in the 
silencing of gene expressions in bacteria, yeast, and human cells [25] 
[26]. This CRISPR interference (SRISPRi) is efficient and reversible and 
can simultaneously suppress multiple target genes [25]. Additionally, 
fusion of dCas9 with distinct regulatory domains resulted in specific, 
robust, or even inducible transcriptional activation or suppression 
of gene expressions in human and yeast cells [1,25,27,28]; guided by 
sgRNAs, this system may help to map or perturb regulatory elements at 
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the genome wide level. Similarly, engineered DNA-binding molecule-
mediated chromatin immunoprecipitation (enChIP) was established 
to isolate specific genome regions retaining molecular interactions. 
In enChIP, an antibody against a tag(s) fused to dCas9 is used for 
immunoprecipitation. [29]. Combined with mass spectrometry (MS) 
analysis, genomic loci-associated proteins have been identified using 
this enChIP-MS method [30]. These results demonstrate that the 
CRISPR-Cas9 system can be used as a general tool for precise gene 
regulation or to dissect the chromatin structure of genomic regions of 
interest.

Certainly, CRISPR-Cas9 technology is not limited to genome 
engineering and regulation. Functional genomic screening is a 
potential application of the CRISPR-Cas9 system when combined with 
sgRNA libraries. It is also anticipated that CRISPR-Cas9 technology 
may be used for therapeutic interventions to correct genetic disorders 
or modify endogenous protein expression levels [24].

To harness the technology of the CRISPR-Cas9 system, there are a 
number of issues that need to be considered, for example, how to select 
a target site and how to eliminate off-target effects. The ideal genome-
engineering tool should be easily programmable to target the desired 
sequence within the genome without any off-target cleavage. The main 
advantage of CRISPR-Cas9 system is that it uses RNA as a guide for 
target recognition, which is easy to program and, theoretically, could 
be engineered to guide the crRNA:tracrRNA:Cas complex to any 
DNA target complementary to the crRNA. However, crRNA guided 
target selection is restricted by the protospacer adjacent motif (PAM) 
sequence, which is absolutely required for crRNA binding and cleavage 
by Cas9 nuclease (Figure 1B). The PAM sequence varies in size and 
nucleotide composition with the Cas9 proteins isolated from the 
different bacterial strains. For example, the PAM sequence required 
for SpCas9 (Streptococcus pyogenes) is 5’-NGG, whereas for NmCas9 
(Neisseria meningitides) it is 5’-NNNNGATT or 5’-NNNNGCTT [31].

Off-target effect is a critical issue in genome engineering, 
particularly for therapeutic application. In initial studies, significant 
off-target effects were observed using of the CRISPR-SpCas9 system, 
which may have been caused by the mismatch tolerance of SpCas9 and/

or the unoptimized dosages of SpCas9 and sgRNA [6,32-34]. Longer 
PAM sequences should increase specificity and decrease the number 
of cutting sites within an interest region of genome, thus decreasing 
the off-target effect. The use of certain Cas9 orthologs that recognize 
longer PAM sequences (such as NmCas9) has improved specificity and 
reduced off-target effects [35]. More recently, a strategy of combining 
a Cas9 kinase mutant (Cas9n) with paired guide RNAs (called double 
nicking) drastically reduced off-target activity by 50~1500-fold in 
cell lines and facilitated gene knockout in mouse zygotes without 
sacrificing on-target cleavage efficiency [36]. This strategy will enable 
the CRISPR-Cas9n system to perform a wide variety of genome 
engineering applications that require high specificity.

Together, as the first RNA-guided DNA endonuclease, the CRISPR-
Cas9 system has several advantages over other existing genome 
engineering tools [23]. Interest in this easy, reprogrammable, highly 
efficient, and precise genome engineering technology is extremely high, 
as illustrated by the long list of papers published in 2013 in high-impact 
journals such as Science and Cell. Although many questions remain to 
be addressed, the CRISPR-Cas9 system has the potential to transform 
basic science, biotechnology, medicine, and even our daily lives.
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