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Understanding the molecular signaling network that translates the 
presence of extracellular signal proteins into the multitude of cellular 
responses, both transcriptional and non-transcriptional, is critical for 
our understanding of development and physiology of animals and 
pathogenesis of numerous human diseases.

The most common study is the Hedgehog (Hh) signaling 
pathway, which plays well-recognized roles in both development and 
various types of cancers [1]. Earlier this year, the US Food and Drug 
Administration has approved Vismodegib, the first drug specifically 
targeting the Hh pathway, for the treatment of basal cell carcinoma, 
proving that targeting a specific signaling pathway can be a viable 
strategy for fighting human diseases [2]. However, the quick emergence 
of cancers resistant to this drug also attests to the need of additional 
research aimed at better understanding of the critical events in this 
pathway [3]. 

The framework of Hh signal transduction in target cells was first 
established in the model system Drosophila melanogaster [1]. Briefly, 
the Hh protein binds a receptor complex on the cell surface, of which 
the main signaling component is a 12-span transmembrane protein 
named Patched (Ptc). The binding between Hh and Ptc relieves Ptc’s 
inhibitory effect on a serpentine receptor-like protein Smoothened 
(Smo). This allows the activation of Smo, which transforms a dual 
functional transcription factor, Cubitus interruptus (Ci), into a 
transcriptional activator. In the absence of Hh, Smo is inhibited by Ptc, 
and Ci is processed into a transcriptional repressor. 

The importance of Hh signaling in mammalian development 
was obvious upon the cloning of the mammalian Hh homologues, 
Shh, Ihh, and Dhh, which are expressed in tissues with well-known 
organizing activities, such as the zone of polarizing activity in the 
limbs, the embryonic node, notochord and the floor plate of the spinal 
cord [4]. Subsequent characterization of the mouse mutants for Shh, 
Ptch1 (one of the Ptc homologues in mammals) and Smo confirmed 
that Hh signaling is indeed critical for mammalian development and 
cancer formation [5-7]. The conserved function of these key pathway 
regulators between insects and mammals appeared to outline an 
evolutionary conserved mechanism of Hh signal transduction. 

This was changed completely in 2003, when three proteins, Ift88, 
Ift172 and Kif3a, previously known to be involved in building the 
flagella in ciliated algae and the cilia in animals, were found to play 
essential roles in Hh signaling in mammals [8]. The loss of cilia in mice 
leads to abnormal patterning of the ventral spinal cord and somites, 
as well as a downregulation of Hh target genes such as Gli1 and Ptch1, 
suggesting a failure in Gli activation. Interestingly, the same mutant 
mice also exhibit polydactyly and other morphological characteristics 
suggesting a possible loss of Gli repressor activities [9].

Genetic epistasis analyses offer great insight into how the cilium 
affects Hh signaling. The loss of Ptch1 and Rab23, two cell-autonomous 
negative regulators of the Hh target cell response, fails to activate Hh 
signaling in the absence of the cilium, suggesting that cilium is involved 
in the intracellular transduction of the Hh signal [8]. Further analysis 
showed that Suppressor of Fused (Sufu), an essential negative regulator 

of the Gli proteins, inhibits Gli activation in the absence of the cilium 
[10,11]. These studies, strengthened by subsequent cell biology studies 
revealing the ciliary localization of Ptch1, Smo, Gli and Sufu, suggest 
a model in which a bulk of the Hh signal transduction occurs in the 
cilium [12-14] (Figure 1). 

Smo is localized to the cilium upon Hh pathway activation through 
an Arrestin-dependent process [12,15]. Ptch1 inhibits Smo ciliary 
localization, but the molecular details of this inhibition are not clear 
[14]. Mutations that prevent Smo ciliary localization appear to dampen 
the cell’s response to Hh; whereas Smo proteins carrying mutations 
that render them constitutively active are coincidentally localized to 
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Figure 1: The primary cilium and the Hh signaling. The interaction between 
Shh and Ptch1 leads to the ciliary localization of Smo, which is otherwise 
inhibited by Ptch1. A Gli-Sufu complex is also localized to the cilium and 
this localization is enhanced by Shh. It is believed that Gli proteins are 
proteolytically processed inside or at the base of the cilium in the absence 
of Shh. In the presence of Shh, activated Smo promotes the dissociation of 
Gli proteins from Sufu and turns Gli proteins into transcriptional activators. 
Smo outside the cilium appears to regulate cell migration and neurite growth 
in response to Shh.
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the cilium independent of Hh [12]. These results suggest that ciliary 
localization is an important part of Smo activation. However, ciliary 
localization per se does not appear to be sufficient for the activation of 
the pathway because in certain context constitutive ciliary localization 
of Smo can be associated with decreased Hh pathway activation [16-
18]. Obviously, many questions remain on how Smo localization to 
the cilium is regulated by Hh and Ptch1; why ciliary localization is 
important for Smo activation and what is needed to activate Smo once 
it arrives in the cilium. 

Although Smo is structurally related to serpentine receptors and it 
is likely that the second messenger cAMP may play a role in Hh signal 
transduction, studies in Drosophila suggest that direct interaction 
between Smo and a downstream multi-protein complex containing 
Ci is a crucial step of the Hh signaling [19-22]. If an analogy can be 
drawn in vertebrates, then Gli protein localization to the cilium has to 
occur to allow physical interaction with activated Smo. Some indirect 
evidence appears to point to such a possibility. For example, cAMP-
dependent protein kinase A inhibits Gli protein activation and Gli 
ciliary localization [23,24]. In addition, disruption of cytoplasmic but 
not ciliary microtubules blocks the ciliary localization of Gli2 and a 
coincidental decrease in Hh signaling activity [25]. Although these 
results are consistent with the requirement of Gli ciliary localization 
for Hh pathway activation, a solid connection between Gli ciliary 
localization and their activation needs to be established through more 
stringent tests. 

Although it is clear that the cilium plays a critical role in Gli protein 
activation as well as their proteolytic processing, some evidence points 
to the existence of a cilium-independent mechanism of Hh pathway 
activation. First, double mutant analysis shows that the loss of cilium 
does not completely rescue the Ptch1 mutant phenotype, suggesting 
that at least part of Hh pathway downstream of Ptch1 is through a 
cilium-independent route (our unpublished data). Moreover, two 
recent studies showed that although the primary cilium is required for 
the induction of brain and skin tumors harboring activating mutations 
in Smo, it plays an opposite role in the induction of tumors harboring 
activating mutations in Gli2 [26,27]. This “negative role” of the cilium 
in Gli2-mediated Hh pathway activation and tumor induction can 
be partly explained by the loss of Gli3 repressor in the absence of the 
cilium. It is also possible that cilium may be required for most, but not 
all Gli activator in this context.  

In addition to the transcriptional response mediated by the Gli 
family proteins, Hh proteins also elicits non-transcriptional responses, 
such as cell migration and neurite growth in their target cells through 
a Smo-dependent pathway [28]. Interestingly, this non-canonical 
Hh response appears to be enhanced in the absence of the cilium, 
suggesting that the cilium may represent a binary switch between two 
different pathways downstream of Smo [29]. 

In summary, the connection between the cilium and Hh signaling 
is as fascinating to science as it is important to treating various human 
diseases. The existing evidence shows that the roles of the cilium in 
Hh signal transduction are complex and deserve more investigation 
before cilium-based therapeutic strategy can be applied to human 
patients. We will definitely see more exciting progress in this front for 
the coming years. 
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