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Introduction
The initial inflammatory reaction is a protective response to 

triggers such as infection or tissue injury [1]. However, inflammation, 
particularly prolonged inflammation, can also damage normal tissue. 
For instance, reactive oxygen species (ROS) and proteases leaked from 
leukocytes kill normal cells [2]. Prolonged inflammatory reaction is 
considered part of the pathogenesis of a variety of cardiac diseases, 
including heart failure and adverse left ventricular (LV) remodeling 
[3]. This is supported by the finding that levels of proinflammatory 
cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 
and IL-1β, increase during heart failure [4]. In fact, elevated circulating 
levels of TNF-α and IL-6 have been reported as independent predictors 
of mortality in patients with heart failure [5,6]. However, cytokines are 
also known to exhibit cardioprotective effects in certain settings [7]. 
These findings suggest that regulation of cytokines is a potential target 
for development of therapies for heart failure.

Fibrosis is the final step in the inflammatory process and a major 
pathophysiological feature of adverse LV remodeling after myocardial 
infarction or in pathological cardiac hypertrophy [8]. Proinflammatory 
cytokines released as part of the inflammatory response accelerate 
the collagen deposition leading to fibrosis [1]. This has been shown 
in models of pressure overload-induced cardiac hypertrophy and 
ischemia-reperfusion injury [9,10]. Therefore, the extent of the 
inflammatory response following damage to cardiac tissue is a key 
prognostic factor for heart disease.

Cardiac fibroblasts as a source of proinflammatory cytokines

During inflammation, the injured tissue site is rapidly infiltrated by 
leukocytes, consisting initially of neutrophils, followed by accumulation 
of monocytes, and then macrophages [2]. Communication between 
these leukocytes and the cells surrounding the site of injury or infection 
is a major determinant of outcome following injury or infection [11]. 
While macrophages are the major source of proinflammatory cytokines, 
many other cardiac cells can also generate and release cytokines. 

Only 25% of cells in the normal heart are cardiomyocytes; the 
majority of the remaining cells are cardiac fibroblasts [12]. Under 
pathological conditions, including myocardial infarction, cardiac 
fibroblasts are activated and undergo phenotypic modulation to become 
myofibroblasts that express the contractile protein α-smooth muscle 
actin (α-SMA) [13,14]. These cells are key sources of components 

of proinflammatory cytokines and the extracellular matrix (ECM) 
[12,14], and are highly responsive to cytokines, including TNF-α, IL-6 
and IL-1β [14]. In particular, myofibroblasts play an important role in 
scar formation and fibrosis in LV remodeling following myocardial 
infarction [14].

Cardiomyocytes as a source of proinflammatory cytokines

Monocytes/macrophages, fibroblasts, and cardiomyocytes all 
elevate TNF-α expression via different transcriptional regulatory 
systems including the activator protein-1 (AP-1) and NF-κB [15]. 
Isolated cardiomyocytes have been shown to produce TNF-α under 
certain conditions such as treatment with lipopolysaccharide (LPS) 
[16-18]. IL-6 is also generated in most cells in the heart, including 
cardiomyocytes [16,19] and fibroblasts [20]. In contrasts, most IL-
1β immunoreactivity is localized to endothelial cells and interstitial 
macrophages rather than the myocardium in an animal model of cardiac 
hypertrophy [21]. Treatment with either LPS or hypoxia-reoxygenation 
stimulated IL-1β production in isolated cardiac fibroblasts while 
isolated cardiomyocytes did not respond to either treatment [10]. 
Although cardioprotective effects of IL-6 have been reported as well 
[7], clinical studies suggest that prolonged and/or excessive synthesis 
of IL-6 is detrimental to the heart [6,22]. In fact, IL-6 infusion induces 
heart failure in a rodent model [23,24]. Previous reports demonstrated 
that IL-6 is produced in cardiomycoytes in response to IL-1β [19] and 
promotes inflammation in the heart by recruiting leukocytes [25]. 
Thus, inhibiting IL-6 generation in cardiomyocytes might be sufficient 
to suppress the subsequent inflammatory response.

Activated renin-angiotensin system (RAS) and transforming 
growth factor-β (TGF-β) are critical elements of the pathogenesis of 
LV remodeling in heart failure [26]. Angiotensin II, a component of 
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Abstract
Fibrosis induced by prolonged inflammation is a major pathophysiological feature of adverse left ventricular 

remodeling after myocardial infarction and pathological cardiac hypertrophy. Recent reports strongly suggest that the 
interaction between leukocytes, non-myocytes (mainly cardiac fibroblasts) and cardiomyocytes, possibly mediated 
by cytokine signaling, plays an important role in controlling the inflammatory reaction after cardiac injury. Therefore, 
controlling cytokine secretion from resident cardiomyocytes is one plausible strategy for preventing tissue damage.
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RAS, is a major trigger of myocardial fibrosis. It acts by stimulating 
proinflammatory cytokine secretion from fibroblasts [27]. In vitro, 
angiotensin II induced much greater secretion of IL-6 and TNF-α 
secretion in co-cultures of cardiomyocytes and fibroblasts than 
in cultures of fibroblasts alone, suggesting that paracrine action 
from cardiomyocytes plays an important role in the production of 
proinflammatory cytokines in fibroblasts [27]. 

These findings suggest that the interaction between leukocytes, 
cardiac fibroblasts and resident cardiomyocytes plays an important 
role in control of the inflammatory reaction after cardiac injury. While 
non-myocytes, including cardiac fibroblasts and myofibroblasts, play a 
key role in inflammation and collagen deposition, controlling cytokine 
secretion from resident cardiomyocytes is one possible strategy for 
preventing tissue damage caused by prolonged inflammation in LV 
remodeling after myocardial infarction and pathological hypertrophy. 
Cardiac fibroblasts regulate global myocardial function at a number 
of levels in both adaptive and maladaptive response to cardiac injury. 
For example, they regulate cytokine synthesis, ECM synthesis, ECM 
degradation [14]. Most recently, it was shown that cardiac fibroblasts 
can be reprogrammed to cardiomyocyte-like cells [28]. Since cytokines 
appear to be so central to the regulation of the inflammatory reaction in 
cardiac fibroblasts, controlling cytokine regulation in these cells might 
affect other cardioprotective events. On the other hand, cardiomyocyte 
contribution to the inflammatory reaction is more limited. Therefore, 
targeting cytokine production in cardiomyocytes might be a safer and 
more straightforward strategy for regulating the inflammatory reaction 
(Figure 1).

The inflammatory response is regulated by the mammalian 
target of rapamycin (mTOR)

Rapamycin, a natural product of the bacterium Streptomyces 
hygroscopicus, was approved for clinical use an immunosuppressant 
for organ transplant patients. However, clinical studies reported 
that rapamycin and other mTOR inhibitors can cause distinct 

inflammatory diseases, including pneumonia [29]. In vitro study 
revealed that mTOR inhibition by rapamycin promotes production 
of proinflammatory cytokines by immune cells by stimulating the 
transcription factor NF-κB [30]. Rapamycin also increases production 
of bioactive IL-1β by increasing processing by caspase-1 in bone 
marrow-derived macrophages [31]. Recently, we reported that mTOR 
activation in cardiomyocytes suppresses the inflammatory reaction 
in the early stage of pressure-overload induced cardiac pathological 
hypertrophy, as evidenced by decreased production of IL-6 and IL-1β 
and less accumulation of macrophages, resulting in preserved cardiac 
function [17]. mTOR activation reduced the production of cytokines, 
especially IL-6, in LPS-stimulated cardiomyocytes in vitro [17]. In an 
animal model, anti-IL-6 treatment prevented adverse LV remodeling 
after myocardial infarction [32]. These results suggest that suppressing 
release of proinflammatory cytokines from cardiomyocytes, especially 
IL-6, may be sufficient to inhibit LV remodeling, thereby preventing 
heart failure.

Conclusion
In large clinical trials, anti-TNF-α agent was unable to prevent 

heart failure [33]. Since cytokines can also exhibit cardioprotective 
effects in some settings, the target cell type (leukocytes, cardiac 
fibroblasts or cardiomyocytes), the timing (acute or chronic phase 
following myocardial infarction) and the extent of inhibition must all 
be considered in designing a therapy using anti-inflammatory agents 
[14,15]. Although the main source of cytokines in the heart is the 
cardiac fibroblast [14], cardiomyocytes contribute to the inflammatory 
reaction, particularly via secretion of IL-6 and TNF-α [17,27]. As 
discussed above, controlling the chain reaction of inflammation 
that occurs in resident cardiac cells, including cardiomyocytes, by 
inhibiting proinflammatory cytokine secretion can prevent cardiac 
damage during LV remodeling in an animal model. Advanced cell 
therapy or molecular biology techniques that target proinflammatory 
cytokine production specifically in cardiomyocytes may be an effective 
way to control regional inflammation following cardiomyocyte injury.
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Figure 1: A speculated model of serial inflammatory reaction in the heart following injury.
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