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Introduction
Composite lattice strictures are composed of helical and hoop ribs 

that reinforce a shell. They are characterized by high specific strength 
and stiffness, making them promising for lightweight applications. 
The history and development of this kind of structures can be found in 
literature, mostly published by Vasiliev et al. [1-5].

Lattice structures are using reinforcing ribs in a regular pattern, 
which allows to be analyzed by smearing the ribs over the skin surface. 
Thus, the lattice structure can be analyzed as a continuous layer with 
calculated effective stiffness. Stress and strain equations that are 
based on theory of orthotropic shells can be used. Such continuum 
models are published by Vasiliev [6] and Vasiliev and Morozov [7]. 
Strength and buckling analysis of cylindrical lattice shells based 
on different continuum models are described in articles from 
Slinchenko and Verijenko [8], Totaro and Gurdal [9], Buragohain 
and Velmurugan [10], Paschero and Hyer [11], Totaro [12,13], and 
Zheng et al. [14].

Additionally, composite lattice structures have been analyzed by 
using finite element analysis. Results from FE models can be found in 
articles published by Hou et al., Zhang et al., Frulloni et al., Fan et al., 
Morozov et al. and Azarov et al. [15-20].

However, in most applications, both methodologies are used, where 
the basic specifications of the structure are calculated by employing the 
continuum models. The parameters are then further refined by using 
the finite element models. Correlation between these methodologies has 
been done successfully by Azarov [20].

Despite the aforementioned developments in designing composite 
lattice structures, their application is still limited in some spacecraft 
applications [3,21]. 

In this work, the case of a fuselage section of a small business aircraft 
is examined. The fuselage section has an outer diameter of 1.8 m and 
a length of 4 m. The fuselage section was assumed to be subjected to 
buckling loads and its buckling limit was calculated by a smeared unit 
cell method and finite element analysis. Furthermore, a scaling down 
approach was followed for estimating the buckling loads for scaled down 
prototypes, namely 0.5 and 1 m in diameter. The scaling down approach 
is useful since many times full scale testing is prohibited for this kind of 
structures since they are integrated with no assembly required, making 
testing of single subcomponents not feasible. The correlation between 
the smeared unit cell theory and finite element analysis was very good.

Unit Cell Model Development
In developing the analytical model, a unit cell of the stiffener 

structure has to be defined first. The unit cell is chosen such that the 
whole grid structure can be reproduced by repetition of this unit cell.

The equivalent stiffness parameters of this unit are determined and 
then applied to the whole cylinder panel. Validation comes from the 
generation of the panel by repetition of the cell.

Assumptions
1. The transverse modulus of the unidirectional stiffeners

is much lower than the longitudinal modulus, and cross sectional 
dimensions are also very small compared to the length dimension, 
therefore the stiffeners are assumed to support axial loads only.

2. The strain is uniform across the cross sectional area of the
stiffeners. Hence a uniform stress distribution is assumed.

3. Load is transferred through shear forces between the stiffeners 
and the shell.

Strains used as the matching condition of the stiffener and the shell 
(inner surface of the shell as interface) is given by:
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Strain relationship along the stiffeners’ directions is given by:
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loads were calculated by utilizing a continum unit cell model which was correlated with finite element models for a 
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Where c=cos(ϕ), s=sin(ϕ) and ϕ is the stiffener orientation angle 
from vertical direction.

In this specific case of study, ϕ±26° was selected for the helical ribs 
and ϕ=90°  was selected for the hoop ribs (Figure 1). 

Resultant Forces of the force diagram is as shown below (Figure 2):
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Summing up the forces of each opposite sides in both directions, Fx 
and Fθ  are obtained:

( ) ( )1cos 2cosxF F Fϕ ϕ= + 			                (8)
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( ) ( )2cos 1cosx xF F F Fθ θ ϕ ϕ= = − 		               (10)

Resultant Forces on the unit cell is given by:

3 3 2 22 2 2 2
2 2

lAE t tN c c s c s c
a

ο ο
θ θε κ ε κ    = + + +        

x x x
  (11)

( ) ( )2 2 3 32 2 2 2 2 2
2 2

o ol
x x

AE t tN sc sc s s
aθ θ θε κ ε κ    = + + + + +        

(12)

2 22 2
2

ol
x x

AE tN sc sc
aθ θε κ  = +     

		             	               (13)

Following the same procedure as the force analysis on the unit cell, 

resultant moments are computed with respect to the moment diagram 
(Figure 3):
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Resultant Moments on the unit cell:
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The functions of the mid plane strains of the shell then become:
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The superscript‘s’ denotes the force and moment contributions of 
the stiffener.

By applying the Rule of Mixtures, the forces and the moments are 
superimposed according to the volume fractions of the stiffeners (VS) 
and the shell (VSh).

 

Figure 1: Forces and moments diagram for the lattice unit cell.
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The resultant stiffness parameters obtained from the above equation 
are the equivalent stiffness parameters of the whole panel.

For the calculation of the critical buckling load, the Ritz method 
(Przemieniecki, 1968) was used which is based on the minimization 
of the total energy Π of the cylinder. The total energy of the cylindrical 
structure is the sum of the strain energy U and the external force work V.

U VΠ = + 					                   (22)

The strain energy of an orthotropic cylinder with length L is given 
by the following equation:
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U is dependent from the total stiffness matrix of the unit cell, radius 
r of the cylinder and axial, circumferential and radial displacements u, 
v, w respectively.

The dynamic energy term V, due to the external work for length L 
is given by:
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The displacement field u, v and w are defined by kinematically 
admissible functions and they are approximated by a double Fourier 
series with clamped boundary condition:
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The total energy expression is a function of the stiffness matrix 

elements of the equivalent laminate and the unknown displacement 
field coefficients Amn, Bmn and Dmn. For the equilibrium to be stable, the 
total potential energy of the system must be minimum. This can be 
satisfied by finding the first derivative of the total potential energy with 
respect to the unknown constants Amn, Bmn and Dmn and equating to 
zero. This results in an eigenvalue problem. The resulting Equation is 
then solved for the unknown in-plane load Nx.

Applications for the Selected Cases of Interest
The specifications for the lattice with 1.8 m diameter are summarized 

in Table 1, whereas the material properties in Table 2 (Tables 1 and 2). 

By using the above requirements and theory, a MATLAB code was 
written where the buckling load was calculated and verified by finite 
element analysis using MSC NASTRAN. The Finite element model 
consisted of 4400 beam elements for the hoop and helical ribs and 

Figure 2: Finite element model of the 1.8 m diameter fuselage. Part of the 
skin is removed from view so the ribs can be seen.

Figure 3: First buckling mode of the full scale fuselage calculated with finite 
element model.

Parameter [90/±26º] ribs orientation
Material HTS5631

Skin Thickness, mm 1.4
No of Reels (each side) 20

No. of Helical ribs 40
No of Circum. Hoops 6

Area of Rib Section, mm2 134
Mass, Kg 48.8

Table 1: Specifications for lattice fuselage structures.

Property Value
Young's modulus E1 128.9 GPa
Young's modulus E2 10.4 GPa
Shear modulus G12 4.11 GPa

v12 0.34
Thickness t 0.35 mm

Table 2: HTS-5631 material properties.
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12000 shell elements for the composite skin. The one side of the model 
was clamped whereas the other one was subjected to a compressive 
load which was distributed to the nodes via multi-point constraints 
(MPCs). The first buckling mode from the finite element model of the 
full scale fuselage is shown in Figure 3, whereas the comparison with 
the unit cell analysis is shown in Table 3 (Figures 2 and 3).

In order to scale down the wafer to the desired main dimensions, 
the analysis was based on the of buckling load/mass ratio (Pcr/M) of 
the scaled down structure versus the cross-sectional area (Asc) of the 
ribs. Moreover, the number of reels was decreased with respect to 
manufacturing restrictions, such as keeping the spacing between 
the reels the same. Finally, the skin thickness remained constant, 
since further scaling down its thickness below the four layers with 
total thickness of 1.4 mm was not possible because it could lead to 
an unsymmetrical fuselage skin layup. Given the above descriptions, 
a parametric analysis was done with the unit cell theory, in order to 
extract the required ribs cross section for two scaled down fuselage 
geometries with 1 m and 0.5 m in diameter. The results for both scaled 
down structures are summarized in Figures 4 and 5, where the ratio 
of critical buckling load to mass (Pcr/M) against ribs cross section is 
shown. The results were used with final goal to achieve the same Pcr/M 
ratio with the full scale fuselage (Figures 4 and 5).

The final step was the correlation of the unit cell models of the 
scaled down structures with finite element models. Figure 6 depicts 
the first buckling mode for the 1 m diameter prototype whereas Figure 
7 shows the first buckling mode of the 0.5 m diameter scaled down 
structure. Table 4 shows the comparison of the critical buckling loads 
by finite element models and unit cell method (Figures 6 and 7).

Calculation method Full Scale prototype 1.8 m in 
diameter, 2 m in length

Buckling load calculated by FEM 467.9 kN
Buckling load calculated analytically 463.9 kN

Table 3: Computation of full scale fuselage buckling load by unit cell method and 
finite element analysis.

Scaled down prototype 
1m in diameter, 1m in 

length

Scaled down prototype 
0.5m in diameter, 1m in 

length
Buckling load calculated 

by FEM 263.9 kN 136.5 kN

Buckling load calculated 
analytically 260.6 kN 132.1 kN

Table 4: The comparison of the critical buckling loads by finite element models 
and unit cell method.

Figure 4: Buckling load/mass ratio against cross-sectional area for the 
scaled down prototype with 1 m diameter.

Figure 5: Buckling load/mass ratio against cross-sectional area for the 
scaled down prototype with 0.5 m diameter.

Figure 6: First buckling mode of the 1 m diameter scaled down fuselage 
calculated with finite element model.

Figure 7: First buckling mode of the 0.5 m diameter scaled down fuselage 
calculated with finite element model.

Conclusion
A smeared unit cell analytical solution has been developed for 

the case of a small business aircraft fuselage section, which was also 
correlated with finite element analysis approach. Afterwards, a scaling 
down approach was followed for two scaled down fuselage structures. 
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By keeping the skin thickness the same and reducing the full scale 
fuselage diameter, the ribs cross section and distance were calculated in 
order to achieve the same buckling load to mass ratio. All models have 
shown an excellent correlation between the unit cell approach and the 
finite element analysis.

 Moreover, a close to linear relationship was found between the 
buckling load and the diameter of the structures, enabling testing and 
validation of computational tools in scaled down prototypes.
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