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Hepatic Encephalopathy (HE) is a neurological complication of 
the brain following liver damage that was classically thought of being 
a functional decline in neuronal activity due to metabolic disturbances 
[1]. Acute liver failure as well as chronic liver diseases can cause HE, 
with the progression of HE correlating to the severity of liver damage 
[2]. Initially there are disturbances in cognition, that then progress to 
disruptions in motor control, and finally global suppression of neural 
circuits, which can lead to coma. The first factor identified as a causal 
link and a treatment point for HE was ammonia. However, recent 
research has begun to elucidate strong support for other pathological 
processes in this disorder as well. Due to these varying ideas on the 
progression of HE, this editorial will discuss why the ammonia 
hypothesis of HE pathogenesis is supported by current research as well 
as some strong counterpoints that refute this hypothesis.

Ammonia is normally cleared from the body via the urea cycle 
metabolic pathway in the liver and subsequent excretion via the kidneys. 
However, after liver damage, this metabolic process is impaired leading 
to an increase in serum levels of ammonia. In animal models of HE it 
has been demonstrated that levels of ammonia are elevated into the low 
millimolar range when animals are approaching severe neurological 
decline [2]. Also, patients who have HE have significantly elevated 
levels of ammonia and increased ammonia metabolism as determined 
by Positron Emission Tomography of 13NH3 [3]. Ammonia has been 
shown to disrupt paracellular and transcellular transport across the 
Blood-Brain Barrier (BBB) as well as to increase BBB leakage and 
increase vasogenic cerebral edema [4]. However, due to this increase 
in BBB leakage, ammonia has the secondary effect of crossing the 
permeable BBB where it is metabolized by astrocytes in the process of 
converting glutamate into glutamine [5]. As glutamine levels increase, 
there is a concomitant increase in osmotic pressure that draws water 
into the cell, leading to swelling of astrocytes and cytotoxic cerebral 
edema [2]. Besides the changes that lead to the production of cerebral 
edema, ammonia has the capability to influence neurotransmission. 
Electrophysiology studies have determined that pathogenically 
relevant levels of ammonia, around 1 mM, are able to inhibit excitatory 
glutamatergic neurotransmission [6]. This can lead to suppression of 
neural circuits and is thought to lead to the generation of cognitive 
decline. However, this concentration is typically only found during 
end stage HE and thus studies using lower doses of ammonia may be 
more relevant. One study using lower concentrations of ammonia, 
around 0.1 to 0.5 mM, found that ammonia is able to potentiate the 
effect of γ-Aminobutyric Acid (GABA) by increasing its affinity for the 
GABAA receptor by stabilizing the GABAA receptor complex [7]. This 
increased affinity of GABA for its receptor leads to increased GABA 
activity, which has been associated with HE pathogenesis and leads to 
decreased motor activity and reduced consciousness [8]. One other 
potential effect that ammonia may have is its ability to disrupt cerebral 
energy metabolism, which is a pathological state present in patients 
who have HE [9,10]. However, with the current research that has been 
performed, it is difficult to ascertain whether this decrease of cerebral 

energy metabolism is a primary mechanism driving pathogenesis or if 
it happens to be a secondary effect of the other pathological processes 
that occur in this disorder. Thus, ammonia is able to contribute to 
HE pathogenesis by increasing cerebral edema, reducing excitatory 
neurotransmission, increasing inhibitory GABAergic tone, and 
possibly by disrupting cerebral energy metabolism.

The other side of this hypothesis is that ammonia is not involved 
or is only playing a secondary role in HE pathogenesis. Support for 
this is demonstrated in clinical studies that have used ammonia-
reducing therapies, such as lactulose, that are effective only in chronic 
cases of HE with little to no effect on patients with HE derived from 
acute liver failure [11]. Interestingly, it has also been reported that in 
cirrhotic patients who have minimal hepatic encephalopathy that levels 
of ammonia are not increased significantly compared to asymptomatic 
cirrhotic patients [12]. Furthermore, neurotoxicity from ammonia 
does not replicate some of the minor symptoms present in HE such 
as sleep abnormalities and subtle personality changes [8]. In addition 
to this, methods used to remove ammonia from the circulation in HE 
patients, such as hemodialysis, are able to lower circulating ammonia in 
patients, but the therapeutic effects that are generated on neurological 
symptoms are variable demonstrating that removing ammonia from 
the serum does not always lead to improved neurological states in 
patients with HE [13]. Animal models of acute ammonia intoxication 
have demonstrated that ammonia toxicity typically leads to a lethargic 
preconvulsive state that progresses to seizures and finally to coma 
[14]. While during the progression of HE development of lethargy 
and coma is obvious, seizures do not occur very often. To add to this, 
administration of ammonium acetate does not lead to the same EEG 
changes that are found in HE patients that have chronic liver disease 
[15]. This was also found to be replicated in electrophysiology studies 
in rabbits where inducing ammonia neurotoxicity did not have the 
same effects on evoked potentials as rabbits who had undergone the 
galactosamine model of liver failure [14]. The authors of this study 
concluded that ammonia toxicity models were not adequate to assess 
the electrophysiological changes that occur during HE. Another 
confounding factor of the ammonia neurotoxicity models is that they 
often use levels of ammonia that are substantially higher than those 
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typically observed in patients who have HE and due to this the results 
that are generated are difficult to translate to clinical cases of HE. Thus, 
it appears that ammonia does not correlate well with EEG modulations, 
electrophysiological changes, and cognitive and sleep problems that 
take place during HE and adds extra symptomologies such as seizure 
activity which suggests that ammonia toxicity cannot be the only causal 
factor in the development of HE.

While it appears that ammonia does play a part in HE 
pathogenesis, the studies conducted clinically and using animal models 
have demonstrated that other elements must be involved with HE 
progression to explain pathogenesis not accounted for by ammonia 
toxicity. As it stands, ammonia seems to play a significant role in 
chronic liver disease states while playing a small role during acute liver 
failure and minimal hepatic encephalopathy. Future studies will need 
to find ways to isolate these pathological processes in various acute and 
chronic liver damage models to fully identify the pathological effects of 
ammonia. In conclusion, ammonia does play a role in HE progression 
but due to its lack of involvement in some aspects of HE progression, 
there is the need to investigate its interplay with other pathological 
processes to help develop better therapeutic treatments options for 
HE. 
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