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Introduction
Environmental oil pollution is a common phenomenon that 

causes significant ecological and social problems. Moreover, for 
a variety of reasons, the traditional treatment processes used to 
decontaminate polluted areas have been limited in their application 
[1]. The biodegradation of petroleum-contaminated soil has become 
a very important issue in environmental protection over the last two 
decades [2], mainly because of the possibility of using microbial strains, 
which significantly reduces the costs of soil cleanup technologies. This 
microbial bioremediation has received increasing attention because of 
a number of advantages over other remediation technologies. However, 
only 1% of the overall microbial population can degrade crude oil 
and its derivatives. Pseudomonas spp. belongs to a genus with very 
high gas oil biodegradation activity. The isolation, identification and 
characterization of crude oil degrading bacteria and their remediation 
efficacy from different ecological niches has previously been reported 
by several other researchers [3,4]. Thus, there is a growing interest in 
the use of microorganisms for reduction of organic pollutants [5]. To 
date, the most important organic degrading bacteria have been assigned 
to the Pseudomonas genera. Some of them have been widely used for 
bioremediation of oil-contaminated environments [6]. This capacity 
of bioremediation is a consequence of several mechanisms including 
the production of a wide range of metabolites such as siderophores 
and biosurfactants. In addition, Pseudomonas spp. are able to degrade 
alkynes and/or aromatic hydrocarbons under aerobic or anaerobic 
conditions [7].

The purpose of the present study is to assess the ability of certain 
fluorescent pseudomonads (strains of P. fluorescens, P. putida, P. 
aeruginosa and a consortium of these strains to degrade gas oil by 
producing biosurfactants and siderophores.

Methods
For the gas oil biodegradation study, bacterial strains that 

were employed include a PGPR (plant growth-promoting 
rhizobacterium) (P. fluorescens (P9) and PGPR P. putida 
(P10),and the strain P. aeruginosa (PR) which was isolated from 
contaminated surface soil. P9 and P10 strains were isolated from 
Triticum spp. rhizosphere of the region of Mascara (Northern-
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Abstract
This study aims to identify the capacity of two fluorescent Pseudomonas plant growth-promoting rhizobacteria 

and one strain of P. aeruginosa to produce biosurfactants. The strains were grown in Mineral Salt Medium 
(MSM) with 1% (v/v) tapis gas oil as a sole carbon and energy source. Biosurfactant synthesis was monitored 
by measuring surface tension, emulsifying index (E24), drop-collapse and bacterial adhesion to hydrocarbons. 
The best strain, P. aeruginosa, was able to reduce the surface tension to 55 mNm-1 with an E24 of 25.29%. The 
hydrophobicity was below 30%, a significant decrease for P. aeruginosa was signaled. Bacterial adhesion to 
hydrocarbons assay results showed that, P. aeruginosa had the highest level of cell adhesion (25.4%), followed by 
P. fluorescens (22.90%) and P. putida (17.07%). Temperature of 30°C and pH 7 were found to be optimum. This
study showed that these PGPR strains had the ability to biodegrade gas oil and concurrently produce biosurfactant.
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Algerian West, 2°,11’W, 35°, 26 ‘N). The results of the biochemical 
characterization, determined by means of API 20NE; bio Merieux 
Vitek strips and on the basis of Pseudomonas biochemical tests 
as described in Bergy’s Manual of Determinative Bacteriology 
, permitted the identification of these strains as P. fluorescens, P. 
putida, and P. aeruginosa. The fluorescent strains were Gram-
negative, aerobic, , catalase and oxidase positive rods, showed 
oxidative metabolism on Hugh Leifson medium and grew at 4°C; 
only PR grew at 41°C. P. fluorescens and P. putida had the ability 
to produce plant growth regulator (IAA) (89 µgl-1 and 116 µg l- 
respectively), siderophores and solubilize phosphate.

Use of gas oil as a carbon and energy source

The Pseudomons strains from overnight cultures (104-105 cells/
ml) were transferred to 100 ml of sterile mineral medium (MM)
described by Abu-Ruwaida et al. [8] with 0.2% (v/v) of gas oil as carbon 
and energy source. The cultures were grown aerobically at 30°C for 7
days with shaking (150 rpm). Bacterial growth was estimated by two
parameters: colony forming unit (CFU/ml) (for strains) and optical
density of the cultures at 600 nm (for bacterial consortia).

Gas oil biodegradation

The bacterial strains from overnight cultures (104-105 cells/ml) 
were transferred to 250 ml Erlenmeyer flasks, each containing different 
concentration of gas oil (20, 40,60, 80,100 and 120%) and 100 ml of 
sterile Mineral Medium MM (containing in gl-1):L-asparagine,05; 
K2HPO4,05; MgSO4•7H2O,0.2; FeCL3•6H2O,0.02). The pH of the 
medium was adjusted to 7.0 ± 0.2. Cultivations were performed in 250 
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phase was measured (A1). The degree of hydrophobicity is calculated as 
[1-(A0−A1)/A0]×100%. Each experiment was tested in triplicate. When 
hydrophobicity is between 0% and 30%, it is assumed that the cell surf 
ace of the microorganism has hydrophilic properties; from30% to 40%, the 
surface has mixed hydrophobic and hydrophilic properties; above 40%, the 
cell surface of the microorganism has hydrophobic properties [14].

Statistics 
All experiments were conducted in triplicate. Results were evaluated 

for statistical significance using Pearson correlation to determine how 
these variables were interrelated.

Results and Discussion
Use of gas oil

All three of the bacterial strains utilized gas oil as a sole source of 
carbon and energy (Figure 1). The greatest specific growth rate was 
observed for P. aeruginosa (PR), this growth rate increases with an 
increase in the gas oil concentration. However, for P. fluorescens (P9) 
the growth rate apparently declined at 80% gas oil. It is interesting 
to note that growth of P. aeruginosa remained significant at high 
concentrations of gas oil. This indicates that the isolate has a novel 
ability to resist inhibition by this substrate. This is shown by the high 

ml flasks containing 50 ml medium at room temperature 28 ± 2, and 
stirred in a rotary shaker at 150 rpm for five days.

Influence of pH and temperature on the growth and degradation 
of gas oil: Mineral medium (MM) with 0.2% (v/v) of gas oil was 
prepared at pH 5 to 10 using 1 N HCl and NaOH. To maintain the pH, 
citrate–phosphate buffer (pH 4-6), phosphate buffer (pH 7 and 8), and 
carbonate–bicarbonate buffer (pH 9 and 10) were used as described by 
[9]. The cultures were grown aerobically at 30°C for 7 days with shaking 
(150 rpm). The influence of temperature (20-40°C) was studied using 
the same experimental condition of culture at pH 7.

Biosurfactant production kinetics

Till date, there are nine different screening methods described 
by the scientific literature about biosurfactant production such as 
hemolytic assay, bacterial adhesion to hydrocarbons (BATH) assay, 
drop collapse assay, oil spreading assay, emulsification assay, surface 
tension measurement, titled glass slide test, blue agar plate and 
hydrocarbon overlay agar assay [10].

In the present investigation the kinetics of biosurfactant production 
were followed in batch cultures for 96 hours at optimum conditions by 
measuring the surface tension, emulsification index E24 of supernatant 
samples obtained after cell separation and testing drop collapse assay.

Surface tension measurement: The surface tension measurement(s) 
of cell free supernatant was determined in a tensiometer (Krüss), using 
the method of Abu-Ruwaida et al. [8]. The values reported are the mean 
of three measurements. All measurements were made on cell-free broth 
obtained by centrifuging the cultures at 10,000 x g for 25 min.

Emulsification index (E24): The E24 of culture samples was 
determined by adding 2 ml of gasoil to the same volume of bacterial 
culture, mixing with a vortex mixer for 2 min, and allowing the mixture 
to stand for 24 hours. The E24 index is given as percentage of height of 
emulsified (he) layer (mm) divided by total height of the liquid column 
(ht) (mm) [11] according to the formula below:

E24 = (he / ht) x 100

Qualitative evaluation of biosurfactant production: The drop-
collapse method was used for initial identification of biosurfactant-
producing bacteria [12]. Briefly, 5 µl of 1.8 mineral oil (Vaseline) was 
added to each well of a 96 well microtiter plate lid. The lid was equilibrated 
for 24 h at room temperature, and then 10 µl of the culture was added 
to the surface of the oil. The shape of the drop was inspected after 1 
min; if the drop remained beaded, the result was scored as negative. If 
the drop collapsed, the result was scored as positive. Tests were carried 
out intriplicate using culture supernatant and cell suspensions. Sodium 
dodecyl sulfate (SDS) and Hexadecyltrimethylammonium (HDTMA) 
were used as positive controls while distilled water and MM as negative 
controls.

Bacterial adhesion to hydrocarbons (BATH) assay: Microbial 
surface hydrophobicity was assessed by the Bacterial Adhesion to 
the Hydrocarbon Method (BATH) described by Rosenberg et al. 
[13] with modifications. The culture was grown on different carbon 
sources including gas oil and a mixture of dodecane, hexadecane and 
gas oil. Cells in exponential phase were centrifuged at 7000×g for 4 
min, washed twice with phosphate urea magnesium buffer (in gL-1: 
K2HPO4,19.7; KH2PO4, 7.26; H2NCONH2, 1.8; and MgSO4⋅7H2O, 0.2), 
and suspended to an OD600 of approximately 1.0 (A0–initial OD600). 
Next, 500 μl of gas oil was added to 5 ml of microbial suspension and 
vortexed for 2 min at 2500 rpm. After 10 min, the OD600 of the aqueous 
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Figure 1: The bacterial growth curves in the presence of Gas oil (a,b) and with 
different concentrations (c).
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coefficients of correlation for PR strain (R²=0.757; R²=0.907). The R2 

gives an indication of the degree of bio-remediation of gas oil.

The most prevalent bacterial hydrocarbon degraders and 
surfactant producers, belong to the genera are Pseudomonas, 
Achromobacter, Flavobacterium, Micrococcus, Bacillus, Arthrobacter, 
Klebsiella, Acinetobacter, Aeromonas, Alkaligenes, Streptococcus 
sp, Corynebacterium sp, Moraxella sp, and proteobacteria [15]. 
Rhamnolipids from Pseudomonas are the best known glycolipid 
surfactants, and their potential applications range from uses in 
cosmetics, food, pharmaceuticals, paper, metal and ceramics, to 
environmental uses such as in bioremediation [16].

It is known that P. aeruginosa strains are able to produce six types 
of rhamnolipids, which possess similar chemical structure and surface 
activity [17]. P. aeruginosa strains are commonly isolated from sites 
contaminated with hydrocarbons around the world, and have already 
been used in bioremediation procedures [18].

The study of hydrophobicity and gas oil biodegradation with 
three bacterial consortia was also carried out (Figure 2). The results 
obtained indicated that these consortia could efficiently degrade gas 
oil. Sugiura et al. [19] reported that biodegradation caused by mixed 
cultures was more effective than that caused by pure cultures mainly 
due to the complexity of oil products. Deppe et al. [20] reported that an 
arctic microbial consortium was able to degrade 77% of crude oil from 
source-I and 71% of crude oil from source-II at 20°C. This validates the 
use of a microbial consortium for biodegradation of complex mixtures 
of hydrocarbons in crude oil [9]. These observations corroborate those 
of Alkhatib et al. [21] who concluded that a bacterial consortium 
showed a good degradation rate of Total Petroleum Hydrocarbon 
(TPH) which suggests the potential application of the consortium for 
soil bioremediation.

Studies on the effect of the pH and temperature showed that pH 7 
was favorable for the bacterial isolates and mixed bacterial (Figure 3a). 
Hence the pH 7 was selected; the bacterial isolates showed maximum 
gas oil degradation at 30°C (Figure 3b). Sathishkumar et al. [9] have 
reported pH 7 as the optimal range for hydrocarbon degradation. 
Extremes in pH were shown to have a negative influence on the 
ability of microbial populations to degrade hydrocarbons [22]. At 
low temperatures, the viscosity of the oil is increased, volatilization 
of alkanes reduced, and the water solubility decreased, delaying and 
decreasing the onset of biodegradation [23]. Banat et al. [22] reported 
30°C to be the optimum temperature for microbial growth and PAH 

degradation. The data corroborate those of [24], who found that using 
the mixed bacterial consortium, which can efficiently degrade the crude 
oil components, maximum degradation was achieved at a temperature 
of 30°C and pH of 7.5. Hence we suggest the use of the above optimised 
conditions and the mixed bacterial consortium for bioremediation of 
crude oil-contaminated sites.

Surface tension

Biosurfactants are surface active compounds produced by 
microorganisms. These molecules reduce surface tension between 
aqueous solutions and hydrocarbon mixtures [23] and enhance the 
bioavailability of hydrophobic substrates to bacterial cells. Reduction 
in the surfactant tension of the medium was a result of emulsification 
of gas oil by the surfactant produced by these fluorescents strains. 
Due to their amphiphilic nature in possessing both polar and non-
polar domains, biosurfactants are able to partition preferentially at the 
interface between phases of different degrees of polarity and hydrogen 
bonding such as water oil, water air or solid water interfaces and are 
thus able to reduce the interfacial or surface tension [13,22].

There was, therefore, a significant lowering (p<0.01) of the surface 
tension of the culture supernatants. The decrease in surface tension 
indicated the production of extracellular surface active compounds 
using the same carbon source. Indeed, the microbial compounds that 
exhibit particularly high surface activity and emulsifying activity are 
classified as biosurfactants. These are structurally diverse surface active 
compounds capable of reducing surface and interfacial tension at the 
interfaces between liquids, solids, and gases, thereby allowing them to 
mix or disperse readily as emulsions in water or other liquids [25]. As 
shown in Figure 4, all the isolates were able to lower the surface tension, 
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presumably via biosurfactant production. We observed the reduction 
of surface tension values from 75 mN/mto 55 mN/m, 45 mN/m and 
36 mN/m, respectively for P. aeruginosa, P. fluorescens and P. putida. 
Surfactant production is a desirable characteristic in oil bioremediation, 
several Pseudomonas are able to synthesize biosurfactants of diverse 
chemical nature. The most studied of these compounds are the 
rhamnolipids produced by Pseudomonas aeruginosa [26]. Nitschke et 
al. [16] reported that glycolipids produced by Pseudomonas are low 
molecular weight compounds, which can lower the medium surface 
tension below 30 mN/m. These results corroborated the presence of 
tensoactive compounds secreted by the isolated strains. The tensoactive 
compounds have a high relevance in several industries including 
petrochemicals in which surfactants are used to enhance oil recovery 

[27]. It can be assumed that this will help to improve the accessibility 
and bioavailability of water-immiscible petroleum hydrocarbons [28].

Emulsification index (E24)

E24 was the method used to quantify the emulsification caused by 
the biosurfactants produced by the tested bacteria. As shown in Figure 
5, all strains presented varying degrees of emulsification, indicating 
the production of biosurfactant compounds. The P. aeruginosa strain 
showed the best result, reaching an emulsification index of 27.94%. 
This value is in agreement with previous results. For example, Pruthi 
et al. [29] values found that cultures of P. aeruginosa growing on a 
similar medium presented an emulsification index value of 30%, and 
was considered an excellent producer of biosurfactant.

The drop-collapse and hemolytic assay

The three isolates were positive for the drop collapse activity and 
hemolytic assay. Carrillo et al. [30] found an association between 
hemolytic activity and surfactant production and they recommended 
the use of blood agar lysis as a primary method to screen biosurfactant 
production. None of the studies reported in the literature Satpute et 
al. [31] mention the possibility of biosurfactant production without 
hemolytic activity. However, in some studies the hemolytic assay 
excluded many good biosurfactant producers, and in some reports 
strains with positive hemolytic activity were found negative for 
biosurfactant production [10].

Cell hydrophobicity (BATH)

Theses isolates demonstrated a broad range of hydrophobicities. 
The hydrophobicity for the gas oil was below 30%; BATH assay results 
showed that P. aeruginosa had maximum cell adhesion with gas oil 
(25.4%), followed by P. fluorescens (22.90%) and P. putida (17.07) (Figure 
6). Our results disagree with [14] data. The results of hydrophobicity 
analysis indicated that the modification of microbial cell surface 
depends on the metabolic of surfactant and microorganism genus. 
According to Zhang et al. [32], mutual attraction between biosurfactant 
and microbial cells can lead to an increase in cell hydrophobicity, and 
therefore, cells have better contact with the hydrophobic substrate and 
finally more biodegradation maybe achieved.

Interestingly, cell hydrophobicity is also an indication of 
biosurfactant production. Cell surface properties are important factors 
that determine the rate of degradation of hydrophobic substrates [33]. 
In an early investigation, cells exhibiting highest hydrophobicities were 
among the fastest hydrocarbon degraders [32]. 

Conclusion
Bioremediation using Pseudomonas strains with plant-growth-

promoting traits offers an attractive treatment option because the 
technology is cost-effective and environmentally compatible. The work 
reported here demonstrates the biosurfactant-producing potential of 
an indigenous P. aeruginosa, and two PGPR Pseudomonas strains using 
gas oil as a carbon source. The findings in this study showed that PGPR 
Pseudomonas strains could be useful in hydrocarbon degradation and 
bioremediation. These strains presented desirable oil bioremediation 
characteristics like surfactant production, high tolerance to different 
hydrocarbons with great catabolic versatility. All of these characteristics 
make these strains interesting candidates as oil bioremediation agents.
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