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Introduction
A novel gene mda-7 (melanoma differentiation-associated 

gene 7), was identified by subtraction hybridization using a human 
melanoma cell line (HO-1) [1-5]. Because of structure of mda-7 similar 
to the interleukin 10 (IL-10) family of cytokines with chromosomal 
localization and cytokine-like properties, mda-7 has been redesignated 
as IL-24 [2-5]. The mda-7 cDNA encodes a protein of 206 amino acids 
with a predicted size of 23.8 kDa [6]. 

Many studies have shown that enforced expression of IL-24 
suppresses cell growth and induces apoptosis in a variety of tumor types 
including melanomas, gliomas, and cancers of the breast, colon, lung, 
cervix, pancreas, and prostate [7-15]. In contrast, these investigations 
also demonstrated that elevated expression of mda-7/IL-24 in normal 
mammary epithelial cells has no cytotoxic effects [16,17]. Studies 
showed that mda-7/IL-24 induces growth suppression and apoptosis in 
diverse cancer cells [5,14]. In addition to its direct antitumor activity, 
mda-7/IL-24 also exerts antiangiogenic activity in vivo [18]. 

Because IL-24 is a novel and prospective gene for the therapy of 
multiple cancers, understanding the mechanism by which this gene 
induces apoptosis in cancer cells will be of immense value. Studies are 
beginning to high light on the signaling cascades involved in mda-7/
IL-24 induction of apoptosis [19-22]. Analyses of signaling pathways 
have revealed Ad-IL-24 regulation of inducible nitric oxide synthase 
(iNOS) and mitogen-activated protein kinase (MAPK) in melanoma 
[23] and Jun kinase, h-catenin, phosphatidylinositol 3-kinase (PI3K),
and protein kinase R(PKR) in lung and breast tumor cells [24,25]. In
the following text, I will describe the excellent antitumor effect of IL-24 
on prostate cancer or hapatoma and the complete elimination of the
xenograft tumor by the CTGVT-DG strategy.

Study on the Excellent Antitumor Effect of IL-24 on 
Prostate Cancer

We have made two constructs to study their antitumor effect: The 
Ad·DD3·E1A·WPRE·E1B (∆55)·(PTEN) (Figure 1a) [26] the Ad·IL-
24·DD3·E1A (Figure 1b) [27]. In (Figures 1a and 1b), both the DD3, 
a prostate cancer specific promoter, were used to replace the native 
promoter in E1A of adenovirus and drive the OncoAd (oncolytic virus 
from adenovirus) to specific targeting to prostate cancer and used the 
same CMV promoter to drive the two expression cassettes of PTEN 
gene and IL-24 gene. Although, PTEN is a brood cancer suppressor 
gene with rather prostate cancer tropism, but we added a WPRE to 
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Abstract
This paper is to emphasize the higher antitumor effect of IL-24, because it can make the complete elimination of the 

xenograft tumor. Another important point in this paper is to introduce a strategy for essentially complete eradication all 
the xenograft tumor which was named “Cancer Targeting Double Gene-Viro-Therapy or the Cancer Targeting Gene-Viro-
Therapy with double gene (CTGVT-DG)”.
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Figure 1a: Construction of Ad·DD3·D55-PTEN. Schematic diagram of 
Ad·DD3·D55-PTEN. The endogenous promoter of E1A was replaced by the 
DD3 promoter, and the E1B-55K gene was deleted. The PTEN expression 
cassette was inserted into Ad.DD3.D55 to construct Ad·DD3·D55-PTEN. ITR, 
inverted terminal repeat.

Figure 1b: Construction of Ad·DD3-E1A-IL-24. Schematic diagram of the 
viruses. In Ad·DD3-E1A, the endogenous promoter of E1A was replaced 
with the DD3 promoter. The expression cassette of IL-24 was inserted into 
Ad.DD3-E1A to construct Ad·DD3-E1A-IL-24. Ad-IL-24 is a replication-
deficient adenovirus with a deleted E1 region. ITR, inverted terminal repeats; 
ψ, packaging signal. 
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enhance its activity of mRNA more stable and deletion 55 KD in E1B to 
make the adenovirus more specific targeting to cancer cells as shown in 
(Figure 1a). All of these were lack in (Figure 1b) which only the IL-24 
was use without any helpless (Figure 1b) [27]. However, the xenograft 
prostate cancer can be completely eliminated by the only IL-24 gene 
(Figure 2b) [27]. Which is better than (Figure 2a) [26], showing the 
excellent antitumor effect of IL-24.

Study on the excellent antitumor effect of IL-24 on hepatoma

In liver cancer, a specific promoter AFP was replaced the native 
E1A promoter of adenovirus to make more specific to live cancer 
and deleted and the 55 KD of E1B in adenovirus was deleted to make 
it more targeting to cancer cell, then we can make two products 
(Figure 3): 1. Ad·enAFP·E1A·E1B(∆55)·(Trail) (AFP·D55-Trail) and 
2. Ad·enAFP·E1A·E1B(∆55)·(SOCS3) (AFP·SOCS3-Trail)as shown 
in (Figure 3a) [28], the Trail is a gene from TNFα superfamily, the 
TNFSF10, which has good antitumor effect, but much less toxicity 
comparing with TNFα itself, the SOCS3 is good and rather liver specific 
tropism antitumor gene.

By the combine of constructs 1 and 2, good anti-hepatoma effect 
was obtained as shown in (Figure 3a) [28]. However, the antitumor 
effect of two gene, the SOCS3 plus Trail as shown in (Figure 3b) was 
less than that of only one IL-24 gene construct as shown in (Figures 4a 
and 4b) [29], showing also the super antitumor effect of IL-24 gene.

Excellent antitumor effect of the CTGVT-DG strategy

 Currently there are cancer gene therapy and cancer oncolytic 
virotherapy two fields. We innovate a third field, by inserting an 
antitumor effect into an oncolytic virus (OV-gene) [30,31] and named 
it as Cancer Targeting Gene-Viro-Therapy, CTGVT. The antitumor 
effect of CTGVT (OV-gene) was very much increased than its original 
two therapy. It is because that the gene can be induced to highly 
replication by its vector OV’s replication. Therefore, the antitumor 
effect CTGVT (OV-gene) was much increased [32]. However, if we use 
two gene in the CTGVT (OV-gene) system i.e. the OV-gene1 plus OV-
gene2 or OV-gene1-gene2 and named as CTGVT-DG, by which all the 
xenograft tumor can be completely eradicated. 

Here we only give an example of our CTGVT-DG strategy, the 
ZD55-Trail+ZD55-Smac or the ZD55-Trail-IETD-Smac as shown in 
(Figure 5) [33]. Since the two genes we used may have compensative or 
synergetic effect between them many other CTGVT-DG to complete 
eradication of xenograft tumor has been obtained by us [34-38]. 
The antitumor effect of the CTGVT-DG is much higher than that 
of the antitumor effect of PD-1 antibody or Amgen’s excellent drug 
OncoHSV-GM-CSF (data which will be published later). That is a great 
success.

Figure 3a: Construction of adenoviruses and aberrant protein expressions in hepatocellular carcinoma (HCC) cell lines. Schematic diagram of the viruses. All 
viruses were created using the backbone of wild-type serotype 5 adenovirus (Ad5) (ITR, inverted terminal repeat; ψ, packaging signal).

Figure 2a: Ad·DD3·D55-PTEN inhibits the growth of prostate cancer cell 
xenograft tumors. Antitumor effect of infection of CL1 xenograft tumors with 
different adenoviruses. The tumor volume was measured and is presented as 
the mean ± SD. 

Figure 2b: Antitumoral efficacy of the viruses in nude mice. PBS or different 
viruses were intratumorally administered to nude mice bearing DU145 
xenograft tumors. The tumor volumes (mean ± SD, n=6) were measured with 
caliper and estimated using the following formula: tumor volume (mm3)=length 
× width2/2.
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Figure 3b: The antitumor effect of the combined treatment of AFP-D55-SOCS3 and AFP-D55-TRAIL in vivo. (a) Tumor volumes were recorded. Each point represents 
the means ± SD tumor volume (n=8). (b) Kaplan-Meier survival curves of animals. The pair-wise log-rank test was used to analyze the survival rates of different 
groups. (c, d) At the end of this experiment, tumors removed from the mice were documented as photograph and weighted (**p<0.01)

Figure 4a: Ad.enAFP-E1A-∆E1B-IL-24. Schematic structure of the recombinant oncolytic adenovirus. All viruses were created using the backbone of wild-type Ad5 
(Ad-Wt). As for Ad·enAFP-E1A-∆E1B-IL-24, the native E1A promoter was replaced by the AFP promoter modified with the SV40 enhancer at its 50 flank, and both 
E1B-19 kDa and E1B-55 kDa genes were deleted to construct Ad·enAFP-E1A-∆E1B, which was further modified with the interleukin (IL)-24 expression cassette driven 
by the murine cytomegalovirus promoter (mCMV) to form the gene-virus Ad·enAFP-E1A-∆E1B-IL-24. ITR is the inverted terminal repeats.

Figure 4b: Potent antitumor efficacy of Ad·enAFP-E1A-∆E1B-IL-24 in nude mice. Female BALB/c nude mice were subcutaneously inoculated with Huh-7 cells at the head 
and neck region (5 ×106 cells per 100 ml). When tumors reached a size of ~ 90mm3, the animals were treated with an intratumoral injection of Ad·enAFP-E1A-DE1B-IL-24 or 
PBS (injected virus with a daily dose (4 × 108 plaque-forming units (PFU)) for 5 consecutive days). Data are presented as the mean ± s.d. (n=6). AFP, α-fetoprotein.
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