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Introduction
Effects of androgens on drug metabolism of the liver are well 

known and these are attributed to anabolic properties of the hormones 
[1,2]. On the other hand, the impact of the influence of the sexual 
hormones on kidney metabolism is relevant in the modulation of 
nephrotoxic substances effect. Early studies of Smith et al. [3] showed 
that androgens regulate cytochrome P450 (CYP) expression in renal 
mouse: infact CYP content of male mice was 3-4 folds higher than 
female one. Changes of androgen concentration modified enzyme 
content, confirming that expression of renal CYP gene is inducible or 
repressible by male hormones [4,5]. Further, level of CYPIIE1 is usually 
much higher in male than in female mice: testosterone treatment 
induced female CYPIIE1 content at level similar to that of male [6].

Sexual differences were observed in phase II metabolism also: liver 
glutathione S-transferases (GST) showed that substrate is determinant 
for the enzyme activity. For instance, the enzyme had higher activity 
in male than in female rats with a variety of substrates [7,8], thus 
underlining significant gender-related differences [9]. On the contrary, 
renal GST activities were higher with several substrates in female than 
in male rats [10] and sex differences were found also in isophorms of 
rat and human enzyme [11]. In addition, the half-life of renal reduced 
glutathione (GSH) is shorter in male (29 minutes) than in female (57 
minutes) mouse [12].

Finally, mouse kidney shows a greater cysteine conjugate ß-lyase 
(ßL) activity in females than in males [13].

Sexual dimorphism was also recently established for ornithine 
aminotransferase in the mouse kidney [14] that is naturally down-
regulated by testosterone, or renal organic anion transporter 2 in 
rat and mice kidney that exhibits gender differences such as strong 
androgen inhibition and weak estrogen and progesterone stimulation 
[15].

The aim of the present research was to get further insights in the 
knowledge of the effects of testosterone, estradiol, and castration on 
renal oxidative metabolism (CYP), glutathione pathway (GSH content 
and GST activities), and cysteine-conjugate ß-lyase (GTK) activity in 
rats. 
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Abstract
The impact of sexual hormones on kidney metabolism may be relevant to modulate the effect of nephrotoxic 

substances. In the present research the effects of castration, testosterone, and estradiol on renal oxidative 
metabolism [cytochrome P-450 (CYP)], glutathione pathway [glutathione content (GSH), glutathione S-transferases 
(GST) activities, and cysteine-conjugate ß-lyase [as glutamine transaminase K (GTK) activity] have been studied. 
Naive male rats have a significantly lower GSH content but show a significantly higher GST activities and CYP 
content than females, whereas no sex difference was for GTK activity. Castration significantly reduces GSH 
content and GTK activity in females and CYP content in males, partially but significantly restored by testosterone. 
Testosterone significantly increases GSH content and GTK activity in males and GTK activity and CYP content 
in females. Estradiol increases GSH content in males, whereas decreases GST activities in females and CYP 
content in both sexes. Castration followed by testosterone treatment increases GTK activity in both sexes whereas 
increases CYP content and reduces GSH content in females. Castration followed by estradiol treatment increases 
GSH content and reduces GST activities in males and CYP content in both sexes. In conclusion, the results suggest 
that sex hormones influence metabolic pathways of the kidney and that they are probably responsible of the sex-
related differences of chemical-induced nephrotoxicity. An univocal model to define sex-related toxicity of xenobiotic 
substances is far to be identified.
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Table 1: Distribution of groups and treatments.

Jo
ur

na
l o

f D
ru

g Metabolism

&
Toxicology

ISSN: 2157-7609

Journal of Drug Metabolism and
Toxicology



Citation: Maso S, Nicolli A, Gambalunga A, Mongillo M, Chiara F, et al. (2011) Testosterone and Estradiol Affect Renal Oxidative Metabolism and 
Glutathione Pathway of Wistar Rats. J Drug Metab Toxicol S7:001. doi:10.4172/2157-7609.S7-001

Page 2 of 5

J Drug Metab Toxicol                                                                                                                            ISSN: 2157-7609 JDMT, an open access journalBiotransformations & Toxicology

Materials and Methods
Animals

Albino male and female Wistar rats (Harlan Italy) were purchased 
at one month of age and maintained in plastic cages about one week 
for acclimatization. At the end of acclimatization period, an half of 
males and females were surgically castrated under ketamine (20 mg/kg 
b.w.) and diazepam (5 mg/kg b.w.) anaesthesia. After three weeks, rats 
(five animals per group) were subdivided in twelve groups as in Table 
1 Eight groups were weighted and treated s.c. on alternate days with 10 
mg/kg b.w. of testosterone propionate (Fluka, Buchs, Switzerland) or 
ß-estradiol-3-benzoate (Fluka, Buchs, Switzerland) dissolved in 0.2 ml 
of corn oil for a totak of ten treatments. The other groups were treated 
s.c. with 0.2 ml of corn oil only. Animal husbandry and treatment were 
performed according to Italian laws on animals for experimental use 
and the research project was approved by Padua University Laboratory 
Animal Care Service and by Italian Board of Health.

Methods 

Twenty four hours after the last injection, rats were killed with 
isoflurane overdose. Kidneys were quickly removed and immediately 
prepared to dose GSH content according to Sedlak and Lindsay [16] 
as non protein sulfhydryl groups (NPSH), GST activities according to 
Habig et al. [17] using 1-chloro-2,4-dinitrobenzene (Sigma, St. Louis, 
MI, USA) as substrate and CYP content according to Omura and Sato 
[18]. ßL, as GTK, was determined according to Cooper and Meister 
[19] using L-phenylalanine (Fluka, Buchs, Switzerland) and α-keto-γ-
methiolbutyrate (Sigma Chemical Co., St. Louis, USA) as substrates. 

Apparatus 

Spectrophotometer Perkin-Elmer lambda 5 model was used for 
spectrophotometric determinations.

Statistics

Two sided Mann-Whitney U test was used for the statistical 
evaluation of the results. Significance was set at p<0.05. Statistical 

Figure 1: Growth rate of male rats: (A) naive, (B) castrated, (C) treated with testosterone, (D) castrated and then treated with testosterone, (E) treated with estradiol, 
and (F) castrated and then treated with estradiol.
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analysis was carried out using the Stats Direct statistical software 
(Statsdirect 2.7.7 version, Statsdirect Ltd, UK).

Results
Each group of rats, weighted on alternate days, showed different 

behaviour in growth rate during hormonal treatment and/or castration. 
Castration did not influence growth rate of males (Figure 1B), whereas 
testosterone treatment caused a significant decrease of the growth 
in naive and castrated males (Figure 1C-D, p=0.0079 and p=0.0159, 
respectively); estradiol caused a reduction of the weight under the 
starting values (Figure 1E-F) in naive and castrated males (p=0.0079 
for both). Castration (Figure 2B, p=0.0159) and testosterone treatment 
(Figure 2C, p=0.0317) increase the growth rate in females. As in males, 
estradiol (Figure 2E-F) treatment causes a decrease of the weight 
under the starting values in naive (p=0.0079) and castrated (p=0.0043) 
animals. 

GSH content 

Naive female rats (Table 2) showed a significantly higher GSH 

content than male ones (+27%, p=0.0079), whereas castration 
reduced it in females (-20%, p=0.0079) but not in males. Testosterone 
significantly increased GSH content in males (+15%, p=0.0079) and 
decreased it in castrated females (-17%, p=0.0079); on the contrary, 
estradiol appeared to have a high influence in GSH content of males 
(+59%, p=0.0079) and castrated males (+42%, p=0.0079), but not in 
females and castrated females.

GST activities

GST activities showed no difference related to gender (Table 2), 
and castration or testosterone treatment not influenced it. In contrast, 
estradiol significantly decreased enzyme activity in castrated males 
(-33%, p=0.0159), naive females (-15%, p=0.0159) and castrated 
females (-21%, p=0.0173).

GTK activity

GTK activity also showed no difference related to gender (Table 2). 
On the contrary, castration caused a slight, but significant decrease in 
females (-6%, p=0.0397), whereas testosterone caused a high increase 

Figure 2: Growth rate of female rats: (A) naive, (B) castrated, (C) treated with testosterone, (D) castrated and then treated with testosterone, (E) treated with estradiol, 
and (F) castrated and then treated with estradiol.
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of the enzyme activity in naive males (+59%, p=0.0079) and castrated 
males (+48%, p=0.0079), naive (+26%, p=0.0079) and castrated females 
(+28%, p=0.0079). Finally, estradiol was not found to influence the 
enzyme activity in both sexes.

CYP content 

Male rats displayed a significantly higher CYP content (2.5 folds, 
p=0.0079) than female ones (Table 2). Castration reduced the enzyme 
content in males at the similar low level of females (p=0.0079), only 
partially but significantly (p=0.0079) restored by treatment with 
testosterone. On the contrary, treatment with estradiol significantly 
reduced enzyme content in naive and castrated male (-69%, p=0.0079 
and -77%, p=0.0079, respectively) and in naive and castrated female 
rats (-47%, p=0.0159 and -24%, p=0.0346, respectively).

Discussion
The aim of the present research was to better study the influence of 

sex hormones on renal metabolic steps in both male and female rats. To 
this aim, the experimental design was performed in basal conditions, 
in castrated animals, and/or after testosterone or estradiol treatment.

The results show that female rats have significantly higher renal 
GSH content than males, but lower GST activities and CYP content, 
whereas GTK is not influenced by gender. Interestingly, testosterone 
treatment significantly increases GSH content in male but not in 
female rats, whereas castration decreases it in females at the same level 
of males. By contrast, estradiol causes a high increase in both sexes 
suggesting the possibility that GSH content is estradiol-dependent.

Nevertheless male have a higher GST activities than female rats; 
treatment with testosterone does not affect enzyme activity, whereas 
estradiol decreases the enzyme activity in both genders. These results 
suggests a down-regulation determined by female sexual hormones on 
the enzyme.

GTK appeared highly influenced by testosterone treatment in 
male and (in minor extent) in female rats, but no differences related to 
gender are observed; castration or estradiol treatment have no effect. 
These results suggest the possibility that enzyme activity is strongly 
regulated by testosterone.

Finally, female have a lower content of CYP than male rats, as 
just defined in mice [4], suggesting the relevant role of testosterone in 

enzyme expression. These results are further supported by the fact that 
castration reduces CYP content in males at level of females or lesser, 
and testosterone increases CYP content in females and castrated males. 
Further, these data are consistent with those reported by Sabolic et al. 
[20] even if some CYP subfamilies (i.e. 1A1) are sexually dimorphic 
[21].

Sex hormones are highly involved in gender differences in transport 
of chemicals [22] and in pharmacokinetic variability [23] suggesting 
that sex-based differences play a role in pharmacokinetic parameters. 
These differences are related to the fact that females have lower average 
body weight, higher body fat composition, smaller plasma volume, and 
lower average organ blood flow than males [23]. All these parameters 
affect the rate and extent of distribution of chemicals.

The gender-related effects of nephrotoxic chemicals depend on 
the type of substance which the animal is exposed to. Hexachloro-1:3-
butadiene affects kidney female rats earlier and in higher extent than 
male ones [24]. This difference is related to hepatic and renal enzymes 
implicated in detoxification and activation of the solvent [25]. On the 
contrary, nephrotoxicity observed in male rats is probably ascribable to 
different metabolic pathway [26]. In addition, dichlorovinyl-cysteine-
induced nephrotoxicity in adult mice is higher in females with low and 
in males with high dose [13], whereas trichlorovinyl-glutathione affects 
prevalently male mice owing to the higher amounts of the metabolite 
in liver and kidney [27]. Finally, male mice [3] are more susceptible 
than female ones to nephrotoxic effects of other chemicals such as 
chloroform.

The sex-related effects on the kidney of the chemicals appear 
further linked to the fate of the substances. As well summarized by 
Dekant and Vamvakas [28], kidney damage is related to three different 
mechanisms, i.e. accumulation of xenobiotics and xenobiotic-induced 
accumulation of endogenous macromolecules in renal tissue, renal 
accumulation of toxic metabolites synthesized in other organs or 
tissues, and intrarenal activation of xenobiotics to reactive metabolites. 
This implies that both the type of chemical and  its metabolic pathway 
are relevant to induce nephrotoxicity.

For that reason, the results of our research are relevant because they 
show that hormone status regulates not only the chemical oxidative 
metabolism but the mercapturic acid pathway also. We demonstrate 
that estradiol modulates GSH content (increasing) and GST activities 

N. GSH GST GTK CYP
nmol mg-1 of proteins

m 5 23.3±0.5 86.9±2.5 17.2±0.4 0.084±0.002
cm 5 23.2±1.8 85.5±2.6 17.6±0.3 0.023±0.005‡‡

m+t 5 26.9±0.6‡‡ 99.6±2.2 27.3±0.7‡‡ 0.084±0.001
cm+t 5 26.1±1.9 94.5±2.5 25.5±0.7‡‡ 0.063±0.006*

m+e 5 37.0±0.7‡‡ 59.0±3.4 18.4±0.3 0.026±0.006‡‡

cm+e 5 33.2±1.2‡‡ 57.8±3.7‡ 18.3±0.5 0.020±0.002‡‡

f 5 29.7±1.5a 64.1± 2.8b 17.8±0.3c 0.034±0.002d

cf 5 23.7±0.8‡‡ 67.2±2.8 16.7±0.3*** 0.029± 0.003
f+t 5 29.9±2.1 66.9±3.1 22.4±0.7‡‡ 0.074±0.002‡‡

cf+t 5 24.7±0.6‡‡ 61.5±3.2 22.9±0.7‡‡ 0.052±0.005‡‡

f+e 5 34.9±0.6 54.3±1.2‡ 18.2±0.3 0.018±0.003‡

cf+e 5 32.2±0.8 50.7±2.3# 18.3±0.3 0.026±0.002**

Table 2: Kidney metabolism in male and females after castration, treatment with testosterone or estradiol, or castration and treatment with testosterone or estradiol. 
Results are supplied as mean ± standard error of the mean (SEM).

Legend: m= males, cm= castrated males; m+t= males treated with testosterone; cm+t= castrated males treated with testosterone; m+e= males treated with estradiol; 
cm+e= castrated males treated with estradiol; the same abbreviations were used for female (f); *p=0.0317; **p=0.0346; ***p=0.0397; #p=0.0173; ‡p=0.0159; ‡‡p=0.0079. 
Superscript lowercase letters show significance of differences between genders: ap=0.0079, bp=0.0556 (not significant), cp=0.283 (not significant), dp=0.0079. 
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(decreasing), whereas testosterone regulates GTK activity. As expected, 
testosterone  profoundly influences on CYP content. According to 
these results, males appears more sensitive to reactive metabolites 
produced by oxidative metabolism owing to a higher CYP and lesser 
GSH content, whereas females are more sensitive to chemicals after 
metabolism via mercapturic acid pathway.

In conclusion, the results confirm that sex hormones influence 
metabolic pathways of the kidney and that they are probably 
responsible of the sex-related differences of chemical-induced 
nephrotoxicity. However, the extent and severity of renal damage in 
males or females depends on the metabolic pathway of the chemicals 
and the mechanisms involved in their toxicity. We postulate that an 
univocal model to define sex-related toxicity of xenobiotic substances 
is far to be identified.
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