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Abstract 
Employing LiCor 6400 gas exchange analyzer and soil respiration chamber attachment (LiCor Inc, Lincoln, NE, 

USA), this paper continuously measured the soil surface CO2 effluxes on the sloping pasture of Heihe River basin 
from early April to late October 2010 to investigate the soil CO2 efflux rate and its feedback to the changes of climate 
and land use. The results showed that during the growing season, the diurnal variation of pasture soil respiration in the 
mountain watershed of the Heihe River valley was low at night, with lowest appears at 7:00, 6:30, 5:30, 5:00, 6:00 and 
7:00 from May to October, and started to rise rapidly during 7:00~8:30, and then descend during 16:00~18:30. The 
maximum soil CO2 efflux appears at 15:00, 14:30, 14:30, 13:30, 14:00 and 15:00. The maximum of average soil CO2 
efflux occurred in July and August, and the second was in May and September, and the third was in April and October. 
And it was basically consistent in April and October. The diurnal average of pasture soil CO2 efflux was between 
0.31~6.98 µmol m-2s-1, and the Q10 value is 2.16. Soil CO2 efflux had an exponential and Boltzmann correlation with 
temperature and soil moisture, respectively.
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Introduction
Soil surface CO2 efflux is one of the major pathways by which CO2 

fixed by terrestrial plants is released into the atmosphere [1]. Given the 
controversy over its potential role in amplifying global warming, soil 
surface CO2 efflux has recently been the subject of intensive study [2-5]. 
In the face of impending global warming, increases in soil respiration 
are likely to mediate progressively lower rates of carbon sequestration 
[2,6-8]. Despite its obvious importance to carbon cycle processes, soil 
respiration has proven to be extremely difficult to quantify accurately. 
Like many other soil processes, respiration exhibits both great spatial 
heterogeneity, particularly at small spatial scales, and great temporal 
variability on diurnal, seasonal and inter-annual time scales [9-15].

Sloping pasture is the main pasture types on the mountain watershed 
of the Heihe River basin, and they cover about 28.27% of the total land 
area. Understanding of the pasture efflux of CO2 from the soil surface 
is a key component of the carbon balance of its ecosystem. Quantifying 
this flux and understanding the factors that underlie the temperature 
and soil moisture variation in its magnitude are fundamental to our 
understanding of the behavior of the ecosystem as a whole and to 
our ability to predict the likely consequences of climate change [15]. 
Up to now, a large number of studies have been carried out on the 
relationship between the dynamics of soil CO2 flux and related factors 
[16-19]. However, little has been reported on the sloping pasture soil 
respiration intensity at regional scale. This study describes the changes 
in CO2 flux of sloping pasture soil and the temporal differences during 
the growing season under different environment conditions were 
explored in this study. The spatial variations of soil CO2 flux and its 
relation to the environmental elements such as soil water content, and 
temperature were discussed. The results help the scientific community’s 
understanding of carbon exchange mechanisms between soil and 
atmosphere and the source-sink changes of the terrestrial ecosystem.

Materials and methods
Site description

The experimental site is located in the Pailugou watershed in the 

Xishui Forest Farm of Sunan County in Gansu Province. The basin 
covers an area of 2.95 km2, with 55% grassland and 40% forest land. The 
study area has a high, cold, semiarid and sub-humid mountain forest 
and grassland climate, with mean annual temperature of 0.5°C, mean 
annual precipitation of 435 mm, and annual potential evaporation of 
21051 mm [20]. Sloping pasture mainly occurs in the mountain forest 
grassland zone at elevation of 2,500~3,000 m and occupies about 
28.27% of the Qilian Mountain region’s total area. The main plant 
species are Carex, Achnatherum inebrians, Polygonum viviparum, 
Oxytropis ochrocephala, Achnatherum splendens. Soil type in the region 
is mountain grey cinnamon soil, with a depth of about 1 m. Hence, the 
study of CO2 flux of alpine meadow soil at this altitude will contribute 
to a better understanding of the feedback effect of soil CO2 emission 
flux on the climate and land use changes under high altitude and low 
temperature conditions.

Soil surface CO2 efflux measurements
Soil surface CO2 effluxes were measured on early April to late October 

2010 with a LiCor 6400 gas exchange analyzer with soil respiration 
chamber attachment (LiCor Inc, Lincoln, NE, USA). The 6400 is a 
closed system infrared gas analyzer that measures soil respiration. We 
installed five PVC collars (0.008 m2) randomly located in each 5m×5m 
plot 2 days. Collars were imbedded approximately 2 cm into the soil 
and left in place throughout the measurement period. We did not begin 
measurements until 1 week after installation to minimize the effects of 
disturbance from collar installation and removed live vegetation inside 
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the chamber collars at least 24 hr before measurements to minimize 
influences of soil disturbance and root injury on the measurements. 

Soil temperature and moisture measurements
Soil temperature and moisture were determined at each soil CO2 

efflux measurement location and time. Soil moisture within the top 80 
mm of soil was measured with a cable tester (1502C Metallic TDR Cable 
Tester, Tektronix, Inc., Beaverton, OR) and dedicated Time-Domain 
Reflectometry (TDR) steel probes (8 cm long) inserted vertically from 
the soil surface. Temperature was measured at a depth of 0.1 m from 
the soil surface with a copper-constantan thermocouple mounted in an 
aluminium probe.

Data analyses
The relationship between soil CO2 flux and temperature was 

analyzed using the statistical analysis software SPSS 13.0 for Windows 
and the dynamical curve was drawn using the Origin Pro 8.0.

Results
The diurnal variation in soil CO2 efflux

Soil CO2 efflux showed an asymmetric diurnal pattern, with a 

minimum between 0300H and 0700H (local time) and a maximum 
in the early afternoon (13:00H-16:00H). Soil CO2 efflux followed the 
increasing trend of soil temperature in the morning, but then leveled 
off with slight fluctuations, while soil temperature continued to increase 
in the afternoon. From evening to early morning of the next day, soil 
CO2 efflux followed, with few fluctuations, the declining trend of 
soil temperature. In growth season, Heihe basin mountainous area 
sloping pasture soil CO2 efflux daily variation assumes the following 
characteristic: In the evening maintains at the low level, Minimum 
value about 6:00, Starts in 7:00~8:30 to elevate,14:00 about maximizing, 
16:00~18:30 to drop gradually, The entire process assumes the single 
peak curve. Different month, Soil breath speed daily variation existence 
remarkable difference, displays starts in the soil breath speed to elevate, 
the maximizing time is different. From May to October, the diurnal 
variation of soil respiration was low at night, the lowest at 07:00 H, 
06:30 H, 05:30 H, 06:00 H and 07:00 H, rise rapidly between 07:00 H 
and 08:30 H, and then descended between 16:00 H and 18:30 H. The 
maximum soil CO2 efflux appeared at 15:00 H, 14:30 H, 14:30 H, 13:30 
H, 14:00 H and 15:00 H (Figure 1).

In different periods of growth, soil CO2 efflux diurnal variation 
existence remarkable difference (Figure 2) The mean daily soil 
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Figure 1: Diurnal variation of meadow soil CO2 efflux in the mountain watershed of the Heihe River basin.
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respiration rate between 0.31~2.58 µmol·m-2·s-1 in May, 0.78~4.85 
µmol·m-2·s-1 in June, 4.61~6.98 µmol·m-2·s-1 in July, and then gradually 
descended at 2.37~6.26 µmol·m-2·s-1 in August, 3.47~4.23 µmol·m-2·s-1 
in September, 1.61~4.21 µmol·m-2·s-1 in October.

The seasonal variation in soil CO2 efflux
The continuously observed results of CO2 flux of sloping pasture 

soil in the Heihe river basin (Figure 3, Table 1) showed that associated 
with the diurnal variations, soil CO2 flux was low in the initial growing 
stage (May) but gradually increased in June, reached a maximum value 
8.49 µmol·m-2·s-1 in July to August (Figure 3) and started to decrease 
in September, the entire process change tendency assumes the single 
peak curve.

Effects of soil temperature and moisture on soil CO2 efflux
Non-linear regression analysis showed that the exponential model 

can better describe the relationship between CO2 flux of sloping pasture 
soil in the Heihe river basin and soil temperature at 15 cm depth as 
shown in figure 4a. Statistical analysis revealed that the correlation 
between CO2 flux of alpine meadow soil (S) and soil temperature was 
significant (P<0.001, n=25), and its regression relation is as follows: 

S=1.41e0.077t (R2=0.88)

Q10=e(10×0.077)=2.16

The variation trends of CO2 flux of sloping pasture soil in the Heihe 
river basin and soil water content were not consistent figure 4b. When 
soil water content was low, the variations in soil CO2 flux and soil water 
content were almost synchronous, i.e. CO2 flux increased with increase 
in soil water content, but when soil content increased to a certain level 
the increase in soil CO2 flux became slow. Analytical results show that 
the Boltzmann model can better describe the relationship between CO2 
flux of sloping pasture soil in the Heihe river basin and soil moisture 
(P<0.001, n=25), and its regression relation is as follows:

S=5.54-5.03/ (1+exp ((x-8.38)/1.34)) (R2=0.98)

Simultaneous stepwise ranking of variables’ effects on soil 
CO2 efflux

Soil temperature and soil moisture, as well as their interaction 
showed effects on changes in soil CO2 efflux. Using the stepwise 
regression process in SPSS, all variables were tested simultaneously 
for their relative contribution to explaining variance in soil CO2 
efflux. These results were similar to those obtained using simple linear 
regression with individual factors: soil temperature was positively 
related to soil CO2 efflux and explained about 46.8% of its variance; soil 
moisture was weakly positively related to soil CO2 efflux and explained 
about 15.7% of its variance; All of the variables combined explained 
about 62% of the variation in annual CO2 efflux in 2010.

Discussion
Soil CO2 efflux showed diurnal and seasonal changes (Figure 1,2) 

The measurements of soil CO2 efflux presented here for the sloping 
pasture sites were in the range of 0.31-6.98 µmol·m-2·s-1. This result is 
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Figure 2: Average of soil CO2 efflux at growth season.
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Figure 3: Seasonal patterns of pasture soil CO2 efflux in the mountain watershed of the Heihe River basin (soil CO2 efflux; Trendline).

Month 5 6 7 8 9 10
Mean Soil CO2 efflux/µmol·m-2·s-1 2.06 2.37 6.35 3.99 3.85 3.01
maximum value/µmol·m-2·s-1 6.35 8.43 8.49 8.37 8.24 4.21
minmum value/µmol·m-2·s-1 1.03 1.54 2.11 2.48 0.88 0.82
CV / % 63.4 56.0 52.4 55.3 61.6 54.6

Table 1: Means and coefficients of variance of pasture soil CO2 efflux.
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higher than one of 2.32-5.70 µmol·m-2·s-1 reported by Michael [21] for 
grassland in northern Ontario of Canada. Raich and Schlessinger [6] 
summarizes large amounts of data showed that average Q10 of grassland 
around 2.4, but for forest soils, Liu Shaohui and Fang jinyun [22] 
believes that global average Q10 is 1.57. This study indicated that the 
Q10 value of sloping pasture soil is 2.16, And LI Linhao [23] in sheep 
grass grassland research results showed that Q10 value is 2.0~3.0 (to 
temperatures for based on), slightly than tropical dilute tree grassland 
in North Australia [24] and high grass grassland in North America [25] 
they think this phenomenon attributed to research locations of latitude 
location partial high, because Q10 value in cold region higher than 
warm region [26]. This study site and the leymus chinensis grassland 
study sites at the same temperate zone, and temperature ranges of the 
experimental period commensurate with each other so their Q10 values 
are closer.

While multiple factors contribute to the differences in measured 
efflux rates, the generally low soil moisture and high soil temperature 
at our site are likely to be the two major factors which determined the 
magnitude of the soil CO2 efflux at the Heihe river basin. Jensen et al. 
[27] measured soil-surface CO2 efflux over two days at 8 locations in a
Pinus radiata D. Don forest in New Zealand using a dynamic chamber
method (portable infra-red CO2 analyser). Their results showed no
apparent diurnal pattern in CO2 efflux, which may have been a result
of a lack in variation in soil temperature (at 150 mm depth) and the
high soil moisture (close to field capacity during the measurements).
However, Davidson et al. [28] reported a diurnal trend resembling the
temperature pattern. Kutsch & Kappen’s [29] measurements in crop
fields showed a diurnal trend of CO2 efflux similar to ours, except that
their diurnal maximum occurred later (about 16:00 H).

When simultaneously considered, soil temperature and soil 
moisture explained 46.8 and 15.7, respectively, of the variance in soil 
CO2 efflux on our sites. Thus our results indicate that soil temperature 
as a single factor explains the greatest amount of variance in soil CO2 
efflux observed within and across sites and over seasons in the Heihe 
river basin (R2=0.88, P<0.0001). Our findings are consistent with 

reports that cite a strong relationship between soil temperature and soil 
CO2 efflux [30,31]. 

Generally, soil moisture limits soil CO2 efflux at either extremely 
high or low moisture levels [30-32]. In agreement with the results of 
Davidson et al. [28], at the Heihe river basin the single factor of soil 
moisture was correlated (R2=0.98, P<0.0001, N=25) with CO2 efflux, 
and the soil CO2 efflux increased slow at high soil moisture contents 
(>15%). This effect at high soil moisture may also be related to the 
availability of O2 in the soil pore space, which affects microbial activity. 
From laboratory and theoretical studies some researchers have found 
that high water content can impede diffusion of O2 into the soil, which 
in turn impedes decomposition and CO2 production [33-34].

Conclusions
Soil-surface CO2 efflux measurements were made on sloping 

pasture of Heihe river basin from April to October 2010. During the 
growing season, the diurnal variation of pasture soil respiration in 
the mountain watershed of the Heihe River valley was low at night, 
with lowest appears at 7:00, 6:30, 5:30, 5:00, 6:00 and 7:00 from May 
to October, and started to rise rapidly during 7:00~8:30, and then 
descend during 16:00~18:30. The maximum soil CO2 efflux appears at 
15:00, 14:30, 14:30, 13:30, 14:00 and 15:00. The maximum of average 
soil CO2 efflux occurred in July and August, and the second was in 
May and September, and the third was in April and October and it was 
basically consistent in April and October. The diurnal mean soil-surface 
CO2 efflux of sloping pasture stand ranged from 0.31 µmol·m-2·s-1 to 
6.98 µmol·m-2·s-1, and the Q10 value is 2.16. The positive relationship 
between soil CO2 efflux and soil temperature that was observed is well 
documented. And the soil CO2 efflux showed a Boltzmann correlation 
with soil water content. 
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