
International Journal of Advancements
in Technology Research Article

1Int J Adv Technol, Vol.12 Iss.4 No:8

OPEN ACCESS Freely available online

Int
ern

at
io

na
l J

ou
rnal o

f Advancements in Technology

ISSN: 0976-4860

Techniques to Improve Cache Utilization for a Better Computing Performance
Laviza Falak Naz*

Department of Software Engineering, NED University of Engineering and Technology, Karachi, Pakistan

ABSTRACT

Cache marks tremendous importance in the life of a processor as it contributes to enhancing the performance
of a CPU. It is of no use if it's not efficiently and effectively utilized. This study focuses on finding approaches
that are helpful for cache utilization in a much organized and systematic way. Multiple tests were implemented to
remove the challenges faced during the practical implementation of such techniques. These approaches include
Data Alignment, Eager Write back, Access Aware Cache Management, Linear Relaxation Method, and Data-
Computation Reorganization.

Keywords: Cache utilization; Data computation recovery, Data alignment; Linear relaxation method; Eager
writeback-a-technique; Access pattern aware cache management

Correspondence to: Laviza Falak Naz, Department of Software Engineering, NED University of Engineering and Technology, Karachi, Pakistan; E-mail:
lavizaniazi2001@gmail.com

Received: May 03, 2021, Accepted: May 10, 2021, Published: May 30, 2021

Citation: Naz LF, (2021) Techniques to Improve Cache Utilization for a Better Computing Performance. Int J Adv Technol 12:8.

Copyright: © 2021 Naz LF. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

INTRODUCTION

The cache is one of the essential elements of the computing devices
which have helped in the improvement of the computational
capabilities of the computing devices. Modern digital devices
have a cache or quick memory access, which contributes to faster
computation and better functionality. The caches have contributed
the right amount in generating computational disparity among
the processor performance and speed. This is due to the essential
information skips that the caches usually make while handling data
at the highest clock speeds. This often leads to a reduced capacity
of the cache, as mentioned in the processor specifications [1].

Cache utilization can be defined as ratio of utilizing the cache data
lines before eviction, or in other words, the frequency of accessing
the data lines in the cache before cache clearance. There are multiple
levels of cache in the processing system. Different groups provide
different access times and speeds, depending upon the processing
requirements of the system. The on-chip cache architectures usually
include level one caches on the same processing cheap, with second
and third in the other chips. In this way, the dependencies of the
cache levels are determined with their distance from the processing
unit. However, the size of cache values the most as usually the level
one cache has very little space as compared to other levels [2].

There are different techniques available that can be adopted,
depending upon the system requirements, architecture, and
organizations. In this scenario, the following paper discusses brief
details about the methods that can be adopted to enhance cache
utilization.

Background

The reduction in capabilities of the cache also extends the program
speed and compile-time, which damages the processors. This might
also lead to massive data losses as the inability to provide data
accessibility and quick navigation along the stack can skip some
essential instructions on the way. The prioritized data, which are
often generated with high-value instructions, all of a sudden, are
ignored. This can not only be dangerous for the processor but also
hampers the leniency of the user experiences [2]. Attributes like
memory latency and memory bandwidth are lemmatized. It not
only affects the computing power of the system but also affects
the capabilities of the CPU by hampering its peak performance
attributes [2].

In modern computation devices such as supercomputers and
the advanced servers, the caches play a very significant role in
determining the speed and efficiency of the computing circuits.
Such devices rely on the cache management programs on basic and
advanced levels to handle the high number of threads as a single
time. Whist multiple threads are not only helpful in determining
the computational skills of these computers [3]. Such computation
devices are always highly dependent upon the speed and higher
computational speeds. Their clock speeds are very high, and the
access rates of the computing registers and the stakes are very high.
Therefore, the cache plays a vital role in providing a quick access
place for the frequent memory controls to the computing devices
[4]. About 44% to 99% of the values in the cache are used within
one repetitive loop of the clock cycle [4]. This illustrates the value of
cache, which helps in the computation of processing systems and has

mailto:lavizaniazi2001@gmail.com

2

Naz LF OPEN ACCESS Freely available online

Int J Adv Technol, Vol.12 Iss.4 No:8

even more functionality to perform in the plans. Cache utilization
becomes a value at this place when the functionality of CPU. The
multicore architecture in the modern computer systems has also
promoted the use of multi-level caches which have a complicated
make and access models. In this scenario, the management of
cache utilization becomes a significant task while considering the
facts of data importance, memory bandwidth, clock speeds, and
cache dependencies, the cache utilization holds an important place
in the light of having functional computing systems with the least
data fluctuations and loses. Cache utilization has been a challenge
for modern computer architects as the programs with multiple
file handling capabilities often disrupt the data lines in the cache,
turning the cache utilization down to a non-negligible extent [5].

Despite considering the value that such programs are highly accepted
in customers' markets and have a perfect role in making modern
computers. Yet, the damage to the architectural foundations of the
systems in terms of reduced cache utilization can be dangerous. In
this regard, there are ways and techniques approached to enhance
the cache utilization on architecture, software, and network levels.

MATERIALS AND METHODS

Data alignment strategy is a functional cache utilization improvement
strategy that deals with the identification of parameters that are
hampering the performance of the cache. It aligns the data attained
from different parameters in a serial pattern, allowing the processor
to select the appropriate methodology to work on (Figure 1).

Figure 1: Data Alignment algorithm for padding size [1].

It is a very flexible model that enables the system to choose data
based on their tile sizes to identify the applications to be prioritized
[1]. In the result of the enhanced padding, the data alignment
technique also allows the data to be transformed into linear arrays.

These arrays are indexed and addressed using quantized indices
which allow the system to manage the data with a reference. In this
way, the data is not addressed directly, preventing data loss, traversal

issues and maintains memory bandwidth [1]. There are various
approaches that can be adopted to enhance the tiling process. One
of such approaches is looping though reduced self-interference of
cache. Although, it has a longer implementation time and requires
a good experimental period for successful practice. Yet, there are
remarkable memory access patterns received with huge leniency,
which can help the systems to be trained for these algorithms,
providing them a pathway to work on while handling the caches
[6].

The increased management of data lines in the cache of the
processor helps to optimize the system for having better control over
the data stored in the plans. In the part of the various cache levels,
the data alignment model must be implemented individually for
each group, while considering all the requirements and resources
for each cache chip. With differences in memory sizes and data
lines, the implementation of data alignment is also changed [6].
Various expressions are used for the manipulation and calculation
of the correct cache data line index while working under the
data alignment model. The following algorithm is used for the
identification of loop pad size.

Pros

• Primary advantage of Data Alignment technique is adaptability
- without any respect to self-interference clashes, tile measure
can be optimized when decoupling from padding phase, comes
about in selection of bigger tile estimate which maximize cache
utilization

• The other pros are that in many tiled arrays, cross-interferences
can be ignored so padding technique can also be applied to
greater than two dimensions’ arrays

Cons

• The structure of the data arrays is transformed, and references to
the array in the rest of the code has to reflect the new structure
[1]

• If the array size is unknown, then the incorporation into the
library routine is impossible

Data and computation reorganization method

Data and computation reorganization at run time applications is
one of the popular methods of improving cache performance with
manageable implementations. This method includes various sub
approaches that can be used collectively or individually to determine
the cache accessibility. These methods vary from architectural and
on-chip performances to programmed implementation, which has
their own purposes and contributions towards the improvement of
cache utilization [2].

One of these are methods is runtime computation and data
transformation method. This helps to reorder data access for the
determination. The process of the locality group is a subcategory
that allows the reordering of data in different dynamic arrays. It
helps to index the data concerning the neighboring items, which
not only helps to enhance the system value but also contributes
to boosting the system performance in terms of cache efficiency
(Figure 2).

3

Naz LF OPEN ACCESS Freely available online

Int J Adv Technol, Vol.12 Iss.4 No:8

Figure 2: Example of logical grouping [2].

It also includes the process of data packaging with dynamic indexes.
It helps the systems to create data packages while considering the
cache data lines undervalue. There are algorithms applied for the
conversion of data arrays into lenient data packages [2]. One such
algorithm is mentioned in the figure below.

Figure 3: Algorithm for dynamic data packaging [2].

The compiler implementation included in the determination of
the data reorganization includes approaches such as a program with
multiple computational capabilities or multi-thread processing
capabilities. Such programs can handle and run the same algorithm
simultaneously, enabling full access to the system over the data.
Although there are a large number of parameters to consider
while understanding and studying the computer implementation
of the data reorganization module such as system specifications,
clock speeds, simultaneous programs, and others, there are highly
reliable and competitive resources to improve cache utilization in
the systems [2].

Pros

• The most important advantage of this technique is that it can be
applied to dynamic applications where data access patterns are
unknown and may change during the compilation of program

• The locality grouping transformation method results in
eliminating 96.9% of cache misses in 2K cache [2]

• Dynamic Data packing methods enhance spatial locality and
reduce the number of cache misses specifically in L2 cache by
rearranging the data in order

Cons

• It is not yet established that data reorganizing methods at
runtime are cost-effective

Linear relaxation method

While considering the high-speed computation and processing
devices such as supercomputers and the relevant high computation
services, which work at exceptionally higher speeds, the value of

cache receives an increased flow of value when the memory bytes
stored in the cache serves the most critical purpose. The high-
speed computation of the supercomputers and servers can grow
to a considerable extent if their caches are well managed, and
the data assigned to the cache is valuable, in terms of ease of use
and frequency. In this scenario, the prospect of improving cache
utilization gains a much significant value. The linear relaxation
methods are one of those high-speed computational methods
which are ideally used in supercomputers, large mainframes, server
farms, and similar computation devices that have high data and
speed requirements [3].

The linear relaxation method includes sweeping and tiling of cache
data lines with algorithms that can traverse across each data line
in the same loop and select the data of value. Likewise, it also
produces a boost in the data lines but re-indexing and verifying the
data stored in each data line. Amazingly, the data stored is traversed
at high speed. The liar relaxation method leads to improvements
in the core-wise performance of the systems to win their cache.
By this, we mean the version of each individual chip-set in each
core chip. Since the modern infrastructure is based on multicore
architectures, the data is handled in multiple lines at each phase.
The figure below represents the cache leniency achieves in multiple
cores after the application of linear relaxation methods.

Figure 4: Improvement by widening boundaries on 8 processors [3].

The algorithm and programs for the linear relaxation methods are
developed in C++ language of computation, providing a broader
scope of applicability to the agenda [3]

Pros

• The system is compatible for multiple platforms including
EDG C++, SAGE and other interfaces making it competent and
approachable for multiple platforms [3]

• The system handles operations in the preprocessors, avoiding
the main stream memory consumption and working faster than
other processes [3]

Cons

• The system needs to be revised for every system. Therefore, it is
not convenient and handy [3].

• A new set of code and testing is required before implementing
for a new system which itself is a very hectic process [3].

4

Naz LF OPEN ACCESS Freely available online

Int J Adv Technol, Vol.12 Iss.4 No:8

Eager writeback-a-technique

Eager Write back technique is used to facilitate bus activities when
dirty lines are being traced into the cache [7]. A method used
to reduce the bandwidth limitations by providing dirty cache
lines only when it is evicted. This approach is used in graphics
applications where there is a massive threat of cache misses [8].
The methods that were tested to compare the difference between
baseline and eager writeback cycles to remove dirty writeback are
as under

With injecting memory traffic: Data traffic is injected in the form
of blocks onto the memory bus and 3 different bandwidths with
higher and lower frequencies (from 400 to 3200 clock cycles) to
observe simulations of data. All injections are equally distributed
among the simulations (of 3 loops). As the amount of injected bus
traffic increases, the eager writeback decreases. Unfortunately, it
does not provide a speedup at high frequencies. On the contrary,
a rise of 11% in rate was shown with the same bandwidth at lower
frequencies. [8]

Without injecting memory traffic: The result of these simulations
with no dirty writeback shows that the spikes are higher in the
baseline case and, ultimately, the execution cycles in all of the 3
loops. Here, the memory bus bandwidth drops to zero and affects
the overall performance. Eager Writeback sets the bus idle states
with first data cache lines due to which the memory bandwidth
gets fully utilized in the third loop. The CPU, as a result, fetches
cache requests quickly. As the LSQ is not fully used, instructions
can leave the IFQ faster and cycle lost is less [9].

The Eager Writeback technique solved the issues of load response
time and finite memory bandwidth. It mainly turns down the
switching time of context by cleaning dirty lines ahead of time
from the switched context. It minimizes the miss cache latency and
pushes the improved data available in the memory level near [11].
This helps in countering other processors' requests faster than ever
and managing tasks quickly, such as write, update, and invalidate
protocols to remove traffic coherency. As a result, a significant
improvement was observed in overall system performance by its
implementation.

Pros

• The system includes reduction in the bandwidth limitations.
Therefore, the system can also be deployed on systems with
small cache functionalities [8]

• The bandwidth is limited to a small finite number which reduces
the technical system requirements such as clock speed [8]

Cons

• The systems including the writeback deployments includes
excessive data loses complaints due to dirty datalinks [9]

• The limitations of the bandwidths also reduce the fetching
speeds of the data which can be challenging for the working of
supercomputers [8]

Access pattern aware cache management

General-purpose GPU applications undergo substantial memory
bottlenecks because the data cache is small and have to be used
across dozens of warps.

To address this issue, the warp throttling technique had been
proposed earlier, due to which the active warps competing for
cache space are reduced in number. However, APCM suggests
that instead of warp-wide cache management, we can use per-
load locality type information to improve utilization of GPU L1
data cache since within a GPU kernel, the same type of locality is
exhibited consistently across all warps. The kinds of data locality
behavior that is displayed by single warp load instruction may be
one of the four types:

• Streaming data: data fetched by a warp load is used on only one
occasion [10]

• Intra-warp locality: data brought by a warp load is reused on
multiple occasions within the same warp [10]

• Inter-warp locality: data fetched by a warp is reused on numerous
occasions but across different warps [10]

• A combination of both inter and intra warp locality is displayed
by some data [10]

The type of locality of each load instruction is detected by APCM
dynamically by utilizing a Monitor Tag Array (MTA), which is a
small tag array structure. It monitors the accesses from a single
warp. Based on the locality type which is detected, either a cache
line brought by a load instruction is protected by APCM, or for a
load instruction, the cache is totally bypassed [11].

Figure 5: Hardware architecture of APCM [11].

The hardware architecture of APCM is shown below. Primarily
the L1 data cache access pipelines are modified. For a warp under
monitoring, the track of access count is kept by MTA. The type of
locality detected per each load instruction is managed by CAIT.
PSB keeps information on which warps are presently protecting
cache lines. For cache sensitive applications, the performance of
GPUs is improved 34% due to APCM. While average improvement
is 22% for all types of applications.

Pros:

• The APCM provides a minimal solution to the mainstream cache
utilization techniques which provide a hardware based system
for the issues. It helps to avoid technical coding complexities [11]

5

Naz LF OPEN ACCESS Freely available online

Int J Adv Technol, Vol.12 Iss.4 No:8

• APCM provides an even distribution of the load which helps
provide an easier cache handling [11]

Cons:

• Multiple threads working simultaneously might lead to a clash
of data lines. It can lead to an array of similar indices [11]

• A change occurred in a consecutive data line while another
traverse cycle is working can affect the loop and thus, results [11]

CONCLUSION

We have discussed various techniques that help to solve multiple
problems in the utilization of cache memory as it plays a significant
part in overall system performance. Since the cache is expensive
and its size is small, therefore, it is essential to be able to utilize it to
its maximum capacity. Each technique discussed in this paper views
the utilization of cache from a different perspective and describes
various approaches to maximize cache utilization.

REFERENCES

1. Panda PR, Nakamura H, Dutt ND, Nicolau A. A data alignment
technique for improving cache performance. Proc Int Conf on
Comput Des VLSI in Comput Process. 1997;587-592.

2. Ding C, Kennedy K. Improving cache performance in dynamic
applications through data and computation reorganization at
run time. ACM SIGPLAN Notices. 1999;34:229-41.

3. Bassetti F, Davis K, Marathe M, Quinlan D, Philip B. Improving
cache utilization of linear relaxation methods: Theory and
practice. ISCOPE. 1999;225-36.

4. Callahan D, Porterfield A. Data cache performance of

supercomputer applications. Supercomputing '90: Proc of the
1990 ACM/IEEE Conf on Supercomputing.1990; 564-572.

5. Zahid Y, Khurshid H, Memon ZA. On improving efficiency and
utilization of last level cache in multicore systems. Inf Technol
Control. 2018;47:588-607.

6. Panda PR, Nakamura H, Dutt ND, Nicolau A. Augmenting
loop tiling with data alignment for improved cache performance.
IEEE transactions on computers. 1999;48:142-9.

7. Sohi GD, Vaipevam S. Instruction issue logic for high
performance, interruptable pipelined processors. Proceedings
of the 14th Annual International Symposium on Computer
Architecture. 1987;27-34.

8. Lee HH, Tyson GS, Farrens MK. Eager writeback-a technique for
improving bandwidth utilization. Proceedings of the 33rd annual
ACM/IEEE International Symposium on Microarchitecture.
2000;11-21.

9. Ghosh M, Lee HH. Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3D
die-stacked DRAMs. 40s Annual IEEE/ACM International
Symposium On Microarchitecture (MICRO 2007). 2007;134-
145.

10. Lee CJ, Narasiman V, Ebrahimi E, Mutlu O, Patt YN. DRAM-
aware last-level cache writeback: Reducing write-caused
interference in memory systems. 2010.

11. Koo G, Oh Y, Ro WW, Annavaram M. Access pattern-aware
cache management for improving data utilization in GPU.
Proceedings of the 44th Annual International Symposium on
Computer Architecture. 2017;307-319.

https://doi.org/10.1109/ICCD.1997.628925
https://doi.org/10.1109/ICCD.1997.628925
https://doi.org/10.1109/ICCD.1997.628925
https://doi.org/10.1145/301631.301670
https://doi.org/10.1145/301631.301670
https://doi.org/10.1145/301631.301670
https://doi.org/10.1109/SUPERC.1990.130070
https://doi.org/10.1109/SUPERC.1990.130070
https://doi.org/10.1109/SUPERC.1990.130070
https://doi.org/10.5755/j01.itc.47.3.18433
https://doi.org/10.5755/j01.itc.47.3.18433
https://doi.org/10.5755/j01.itc.47.3.18433
https://doi.org/10.1109/12.752655
https://doi.org/10.1109/12.752655
https://doi.org/10.1109/12.752655
https://doi.org/10.1145/30350.30354
https://doi.org/10.1145/30350.30354
https://doi.org/10.1145/30350.30354
https://doi.org/10.1145/30350.30354
https://doi.org/10.1145/30350.30354
https://doi.org/10.1145/30350.30354
https://doi.org/10.1145/30350.30354
https://doi.org/10.1145/30350.30354
https://doi.org/10.1109/MICRO.2007.13
https://doi.org/10.1109/MICRO.2007.13
https://doi.org/10.1109/MICRO.2007.13
https://doi.org/10.1109/MICRO.2007.13
https://doi.org/10.1109/MICRO.2007.13

	Title
	Corresponding Author
	ABSTRACT

