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The classical view of proteins is that of hard-working functional 
entities in the body. Even small mutations in their structures are known 
to have detrimental effects as their ability to precision target towards 
for example enzymatic reactions, or signaling is heavily defined by 
their structural organization [1]. Lately, this understanding has been 
challenged by the finding that also a class of intrinsically disordered 
proteins exist in which functionality is rooted in their intrinsic dynamic 
character [2]. As a result of structural variation, genetic mutations and 
posttranslational modifications, a multitude of shapes, structures and 
functionalities arise directly from the overt number of proteins available 
in nature which are currently being explored as bionanotechnological 
agents. 

Added to its natural presence in many food products, this virtually 
endless availability of protein functionality, which gives rise to a very 
wide array of biophysical and chemical properties, in turn resulted into 
them being exploited in food products. For example, the beer industry 
heavily relies on proteins for their capacity to provide stable foams [3], 
while emulsion stabilization exploits the lipid-water interface activity 
of proteins to provide for their emulsifying properties [4]. With rising 
understanding of underlying molecular mechanisms, these, and many 
more applications provided food industry with the perspective of 
increasing functionality in foods at a relatively low protein concentration. 
Under processing conditions proteins were found to undergo changes 
in structure which provided additional means of tweaking protein 
functionality. For example, heating by means of pasteurization or high 
pressure processing can lead to denaturation and/or aggregation of 
proteins [5]. Later it was recognized that food protein functionality 
can be specifically tuned as the technical application of proteins turned 
out to result from the presence of a multitude of modifiable groups 
in the polymeric structure. For example, Maillard reaction induced 
glycosylation of proteins was found to affect self-assembly tendency [6] 
while protease assisted hydrolysis was observed to result in improved 
foaming capacity of proteins from soy, casein and wheat [7]. It is clear 
from such examples that protein engineering application can lead to 
even more possibilities to create proteins with different and improved 
functionalities. 

More recently, it has been recognized that the versatility of protein 
molecules may be of use in other, non-food related and technical 
applications as diverse as bioadhesives, biomedical applications, drug 
delivery systems, shampoos and coatings. In terms of biomimicry, the 
observation that crustaceans secrete multi-protein complexes from 
a so-called cement gland to aid irreversible underwater attachment 
[8] is of interest in this respect. Further characterization of these
protein complexes lead to the finding that they are often structured
as amyloid fibrils [9] rich in cross-β-strand structure [9,10]. Typical
advantages of using bioadhesives include their biocompatibility for
biomedical applications and self-degrading ability. Another recently
explored application in the field of biomedical applications is the
use of proteins and assembled forms thereof for the preparation of
scaffolds and implantations. For example, polycaprolactone/gelatin
based nanoscaffolds were effectively used to induce chondrogenesis of
induced pluripotent stem cells to enable cartilage tissue engineering
[11]. Also in terms of drug delivery the potential of using proteins has
been recognized. Gels composed of proteins in an assembled fibrillar
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conformation have been reported to be able to act as drug carriers 
allowing slow-release of small molecules [12].

A typical non-medical application of proteins includes the current 
recognition that proteins can be assemble into nanowires which 
can serve a variety of technical applications. The structure of these 
nanowires is largely based on the so-called amyloid fibril organization 
of proteins, which has been classically related to a variety of 
proteinopathies [13]. Molecular dynamics studies of nanowires based 
on amyloid fibrils composed of human Islet Polypeptide showed that 
the mechanical behavior of nanowires is a function of the organization 
of β-sheet structure [14], suggesting that these properties can be tuned. 
Experimental evidence further showed that the mechanical properties 
of nanowires composed of amyloid fibrils are controlled by the 
combined action of fibril sliding and fibril failure and that adhesion 
strength between fibrils can be manipulated [15]. In addition to this, 
elastin-based amyloid-like structures [16] and bovine insulin [17] were 
reported to self-assemble into nanowires with the capacity for electrical 
conduction. 

These examples only touch on the potential that proteins, in 
assembled state or in the shape of individual molecules, have already 
shown. The multitude of structures, sizes and the further tunability of 
structures by means of assembly, engineering and processing reveal 
that these applications may only present the tip of the iceberg and call 
for further exploration. 
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