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Abstract

Gastric Cancer (GC) is the fourth most common malignancy and the second leading cause of cancer deaths,
accounting for 10% of global cancer mortalities. Despite the progress made in recent years, the prognosis for
patients with advanced-stage GC remains poor. In the metastatic setting, chemotherapy is the primary choice for
palliative therapy and results in Objective Response Rates (ORRs) of only 20-40% and median Overall Survivals
(OSs) of 8–10 months. Emerging evidence suggests that the aberrant activation of phosphatidylinositol 3-kinase
(PI3K)/AKT signaling is one of the most common molecular events involved in the resistance to current systemic
therapies for GC.A number of small molecule inhibitors targeting the PI3K/AKT pathway are currently under clinical
evaluation for the treatment of various malignancies, including GC. In this paper, we review the current clinical
practice and discuss the potential use of inhibitors targeting the PI3K/AKT pathway, either alone or in combination
with current therapies for the treatment of advanced GC.

Keywords: Gastric cancer; Targeting; Resistance; Inhibitors;
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Introduction
Gastric Cancer (GC) is one of the most common malignancies and

the second leading cause of cancer deaths [1].The estimated global
incidence and mortality for GC were 990,000 and 737,000,
respectively, in 2011, which accounted for approximately 8% of total
cancer cases and 10% of annual cancer deaths worldwide
[2,3].Geographically, GC is more prevalent in developing countries,
especially those in Eastern Asia, Central and Eastern Europe, and
South America, than in the rest of world. The current treatments for
GC include surgery, chemotherapy,radiotherapy, and targeted therapy
against the HER-2-positive segment n GC [4]. Although the prognosis
for GC has been improved significantly in certain nations, such as
Japan and Korea, with national early screening, the five-year survival
rate remains poor. The genome-wide profiling of genetic aberrations
in primary tumor samples from GC patients revealed a number of
potential targets, such as FGFR, Met, and PI3K, for the development of
next-generation therapies for GC [5].Selective inhibitors of these
potential targets are being developed at various clinical stages for the
treatment of cancers, including GC. In this paper, we review the
current clinical practice for the systemic treatment of advanced GC,
the role of the activation of the PI3K/AKT pathway, and the potential
of targeting the PI3K/AKT pathway for treatment of advanced GC.

Current Treatments for Advanced GC
The treatment of GC requires multidisciplinary approaches that

incorporate surgery, chemotherapy, targeted therapy, and
radiotherapy. For patients with operable tumors, surgery and
chemotherapy remain the primary curative treatments. Although the
5-year survival rate has been improved in certain nations, such as

Japan (57%) and Korea (64.3%), it still remains poor globally, ranging
between 20 and 25% [6,7].

In the United States, patients with GC are often diagnosed at
advanced stages due to lack of routine endoscopic screening. Overall,
5-year survival rates are less than 10% [8].The implementation of
additional combined strategies, including neoadjuvant and adjuvant
therapy (pre- or postoperative chemo/radiotherapy or perioperative
chemotherapy), led to 5-year survival rates of only 30-35% and
pathologically Complete Responses (pCRs) in no more than 20-30% of
patients [8-10].In metastatic GC, chemotherapy is the mainstay of
palliative therapy and results in objective response rates (ORRs) of
only 20–40% and a median Overall Survival (OS) of 8–10 months [11].
The recurrence of GC after undergoing surgical treatment has been
reported in approximately 45% of cases in western countries and in
about 22% of cases in Korea and Japan [12].

Although no standard adjuvant or palliative chemotherapy regimen
has been internationally approved for patients with advanced GC, a
number of chemo agents have been widely used alone or in
combination as the first-line therapy, with demonstrated benefits.
These include fluoropyrimidine (5-FU, S-1, or capecitabine), platinum
(cisplatin or oxalipatin), taxane (docetaxel or paclitaxel), epirubicin,
and irinotecan. A systemic meta-analysis based on aggregate data
revealed that in patients with advanced GC, palliative chemotherapy is
more beneficial in terms of the improvement of OS and the relief of
symptoms than treatment with the best supportive care (BSC) [13].
The combination of docetaxel/cisplatin/5-FU (DCF), ECF, and
fluoropyrimidine (5-FU or capecitabine), as well as cisplatin, as a
category 1 treatment has been recommended by the NCCN guidelines.
The response rates to this combination regimen range from 25% to
54%, suggesting intrinsic resistance to these therapies [13].

In January of 2010, trastuzumab was approved as the first targeted
therapy for the treatment of patients with HER2-positive GC. The
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HER family consists of four members: HER-1 (epidermal growth
factor receptor (EGFR), HER-2, HER-3, and HER-4. HER-1, HER-3,
and HER-4 are all activated via ligand binding, whereas HER-2 does
not require a ligand for activation. The activation of these receptors
triggers phosphorylation cascades and the subsequent activation of a
number of signaling transducers, thus activating both the PI3K/AKT
and Ras/Raf pathways, which are important in cancer cell proliferation
and survival [14,15]. Trastuzumab is a humanized recombinant
monoclonal antibody that selectively binds to the extracellular domain
of HER-2, thereby blocking its downstream signaling.

HER-2 amplification or over-expression is observed in about 15%
to 25% of GC cases [16].HER-2 over-expression is more common in
intestinal-type and gastroesophageal junction (GEJ) tumors than in
diffuse-type and gastric tumors [16,17]. The Phase III ToGA trial
found that 22% of advanced and metastatic GC patients overexpressed
HER-2 via an immunohistochemistry (IHC) and/or fluorescence in
situ hybridization (FISH) methodology. The addition of trastuzumab
to chemotherapy also led to a significantly higher ORR, 47% versus
35% (p=0017); significantly longer progression-free survival (PFS)
intervals, 6.7 months versus 5.5 months (p=0002); and significantly
longer OS duration, 13.8 months versus 11.1 months (p=0046) [18].In
Korea, a combination therapy of trastuzumab and CF is recommended
in patients with HER-2-over-expressing adencarcinoma. The greatest
benefit was seen in patients with high levels of HER-2 expression. To
date, trastuzumab is the first and only targeted agent for GC approved
by both U.S. and European authorities. However, a significant
proportion patients withHER-2 positive breast cancer either do not
respond or eventually become resistant to trastuzumab [19],
suggesting the existence of both intrinsic and acquired resistance.

The PI3K/AKT Pathway
PI3K is a family of intracellular lipid kinases involved in the

signaling network that regulates cell survival, proliferation,
differentiation, migration, and metabolism [20]. PI3Ks can be
categorized into three classes (I–III) according to their substrate
preferences and sequence homologies. The activation of receptor
tyrosine kinases (RTKs), such as EGFR, IGFR, and HER2, activates
class IA PI3Ks. The binding of the p85 regulatory subunit of PI3K to
phosphotyrosine residues on activated RTKs leads to a conformational
change in p85, releasing the inhibition of the catalytic subunit p110 (α,
β, and δ isoforms) of PI3K.PI3K localizes to the plasma membrane and
catalyzes the formation of phosphatidylinositol 3,4,5-trisphosphate
(PIP3) through the phosphorylation of phosphatidylinositol 4,5-
bisphosphate (PIP2). PIP3 is a critical activator of the serine/threonine
kinase AKT (also known as protein kinase B). The binding of PIP3 to
AKT leads to the membrane recruitment of AKT and its subsequent
phosphorylation by PDK1 (3-phosphoinositide-dependent kinase) and
PDK2 [20,21].Activated AKT translocates to the cytoplasm and
nucleus and activates the downstream targets involved in cell survival,
proliferation, cell cycle progression, growth, migration, and
angiogenesis [21,22] (Figure 1). PIP3 levels are tightly controlled by
stringent PI3K regulation and via PTEN PIP3 phosphatase and SHIP
(SH2-containing inositol5-phosphatase), which converts PIP3 back to
phosphatidylinosito 4, 5-bisphosphate.

Cell apoptosis is a normal function that controls excessive
proliferation. Cancer cells utilize a variety of mechanisms to down-
regulate cell apoptosis and prolong survival. An important function of
the activated PI3K/AKT pathway in cells is the inhibition of apoptosis.
AKT is a good candidate for mediating these PI3K-dependent cell-

survival responses. A large number of AKT’s direct downstream
substrates have been identified, which include the pro-apoptotic Bcl-2
family members Bad, Bax, caspase-9, and GSK-3 and the forkhead
family transcription factors (FoxO1).Activated AKT inhibits Bad’s
function through direct phosphorylation and suppresses the
expression of Bim and FasL via the indirect phosphorylation of FoxO1
[23]. In addition, it is reported that AKT can phosphorylate iKKs,
which promote cIAP expression for the inhibition of cell apoptosis.
Recently, Jeong et al. proposed that AKT has a role in the activation of
pro-survival pathways, possibly through NF-kB activation and the
inhibition of p53 transcription activity [24].

Figure 1:PI3K/AKT signaling pathwayAKT is a critical node on the
most commonly de-regulated pathway in human cancer. AKT
signaling can be activated by growth factor receptor tyrosine
kinases signaling via RAS and PI3K, or by mutations in AKT1 and
PI3KCA or loss of PTEN.

Activation of the PI3K/AKT Pathway in GC
The dysregulation of the PI3K/AKT/mTOR pathway is a common

phenomenon in many human cancers, including GC [25].It can be
triggered by a variety of mechanisms, including PI3KCA-activating
mutations, loss of PTEN function, overexpression or activating
mutations of AKT, and the overexpression of upstream receptors, such
as IGFR, EGFR, and HER-2 [26].PI3KCA is a gene that encodes for the
p110-alpha subunit of PI3K.PI3KCA-activating mutations occur in
exome 9 and 20 of the PI3K gene and have been reported in GC by
several groups. Mutation frequencies range from 10.6% to 15.9%
[27,28] in Caucasian and 4.3% to 7.1% in Asian GC cases
[29,30].Recently, we screened 127 GC samples from Chinese patients
and detected PI3KCA hotspot mutations in 2.7% of cases (4/127) [31].
This apparent discrepancy between the western and eastern
populations may be due to geographical differences or the sample size,
or it could be related to disease stage and genomic instability status.
PTEN phosphatase is a novel tumor suppressor that negatively
regulates the PI3K/AKT signaling network [32].Loss of PTEN function
can be attributed to inactivating gene mutations, chromosomal
deletions, and promoter methylation, which are implicated in multiple
cancer types, including GC [33].In comparison to PI3KCA mutations,
the lack of detectable PTEN protein expression via IHC staining was
more frequently observed in GC cases, with reported rates of between
20 and 36% [34,35].Consistent with these observations, our recent data
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indicated that the loss of PTEN protein expression, detected via IHC,
was found in 23% (14/61) of the samples from Chinese GC patients
[31].On the other hand, the increased phosphorylation of AKT and
mTOR was observed in 80% [36] and 47%-64% of GC patients,
respectively [37-39], suggesting that additional factors, such as
activation of RTKs (e.g., HER2, IGFR), must be responsible for the
activation of the PI3K/AKT pathway.

Activation of the PI3K/AKT Pathway and Resistance to
Chemo and Anti-HER2 Therapies

Drug resistance is a major problem for the treatment of metastatic
and recurrent GC. The involvement of the PI3K/AKT/mTOR pathway
in the resistance to chemotherapies in GC has been documented by
several studies [29,40]. When primary tumor tissues from GC patients
were tested for their chemotherapeutic sensitivity in vitro, the
association between activated AKT and increased resistance to
multiple chemotherapeutic agents, including 5-fluorouracil,
doxorubicin, mitomycin C, and cisplatin, was found [41].
Consistently, the reduction of basal AKT activity via the ectopic
expression of PTEN sensitized GC cells to anti-cancer chemotherapy
agents. These data suggest that the activation of the PI3K/AKT
pathway has a direct role in resistance to chemotherapy in GC cases.
The combination of PI3K/AKT pathway inhibitors with chemotherapy
has successfully attenuated chemotherapeutic resistance in GC cell
lines [42]. Recently, we tested the anti-tumor activity of a novel AKT
kinase inhibitor, AZD5363, in a patient-derived GC xenograft
(PDGCX) model with PTEN loss. This indicated that AZD5363 and
taxotere monotherapies were ineffective, but significant anti-tumor
activity was observed when AZD5363 was combined with taxotere.
Similarly, Lin et al. showed that the administration of another AKT
kinase inhibitor, GDC-0068, in combination with taxotere induced
tumor regression in a PC-3 prostate xenograft model with a
homozygous deletion of PTEN [43]. Because the doses used for each
single agent only caused modest tumor growth delay in the study,
these results suggest a new strategy to sensitize GC with PTEN loss to
chemotherapy by targeting the PI3K/AKT pathway [31].

In addition to its involvement in resistance to chemotherapies, the
role of the activation of the PI3K/AKT pathway in resistance to anti-
HER-2 agents has been well-studied in HER-2-positive breast cancer
[31,44]. In a HER-2-positive BT474 model, a combination of
AZD5363 and taxotere led to complete tumor regression.A recent
study by Linos et al. indicated that PTEN was lost in the majority of
HER-2-positive GC cases [45]. These observations provide a possible
explanation for the observed clinical resistance of HER-2-positive
breast cancer patients to current anti-HER-2 therapies, including
trastuzumab and lapatinib.

The mechanisms of the AKT pathway in chemo resistance are
multifold.First, activated AKT suppresses apoptotic cell death via the
inhibition of cytochrome c’s release from the mitochondria or via its
regulatory effect on various downstream effectors, e.g., NF-κB, Bcl-2-
family proteins, FOXO transcription factors, and MDM2 [23,24]. In
addition, AKT activation mediates cell cycle progression through the
inhibition of GSK-3, opposing the action of p21WAF1 and p27Kip1,
and via the phosphorylation of mTOR kinases [46]. Geng et al. showed
that Bcl-2 expression was significantly associated with chemo
resistance. The over-expression of Bcl-2 may predict decreased
chemotherapy efficacy in patients with GC [47]. Chemotherapy
promotes the activation of NFkB, which regulates various genes
involved in angiogenesis, metastasis, and the suppression of apoptosis

[48]. The PI3K/AKT pathway is involved in the activation of NF-
kappa B via tumour necrosis factor [49,50] and plays a role in chemo
resistance in GC [51]. The PI3K inhibitor LY294002 was able to
decrease the expression of MDR1/Pgp, Bcl2, and XIAP and to up-
regulate the expression of Bax and caspase3, thereby enhancing chemo
sensitivity by inhibiting a drug pump and inducing apoptosis. These
results suggest an approach to enhance chemo sensitivity by direct
targeting PI3K in human GC [52].

Agents Targeting the PI3K/AKT Pathway in Clinical
Development

A number of inhibitors of PI3K, AKT, and mTOR have being
developed and are now at various stages of clinic evaluation (Table
1).Because mTOR is one of the downstream effectors of PI3K and
AKT, it is expected that inhibitors of mTOR will have more selective
effects and better safety profiles. At present, the mTOR inhibitor
everolimus is the only one approved for the treatment of malignancies,
including breast cancer, neuroendocrine tumors of pancreatic origin,
and subependymal giant cell astrocytoma.

Agents Manufactur
er

Target Indications Stage

mTOR
inhibitors

Everolimus Novartis mTORC1 RCC, HCC, lymphoma,
mBC, and GBM

Approved
for RCC,
PNET
and
SEGA

Temsirolimus Pfizer mTORC1 Various tumors Approved
for CRC

Ridaforolimus Merck mTORC1 Sarcoma, EC, mBC,
prostate cancer, Her2+
mBC, NSCLC

Phase III

OSI-027 OSI mTORC1
/2

Solid tumors and
lymphoma

Phase I

AZD8055 AstraZeneca mTORC1
/2

Gliomas, HCC and solid
tumors

Phase I

AZD2014 AstraZeneca mTORC1
/2

mBC, RCC and solid
tumors

Phase I/II

INK128 Millennium mTORC1
/2

mBC, NHL, MM, and
solid tumors

Phase I

CC-223 Celgene mTORC1
/2

NHL, NSCLC and MM Phase I

DS-30786a Daiichi
Sankyo

mTORC1
/2

Solid tumors and
lymphoma

Phase I

PI3K
inhibitors

BKM120 Novartis Pan-PI3K Solid tumors, prostate
cancer, CRC, ER+ mBC,
Her2+ mBC, GBM,
hematologic
malignancies, NSCLC,
thyroid Cancers and EC

Phase
I/II/III

XL147 Sanofi-
aventis

Pan-PI3K GBM, EC, OC, NSCLC,
Her2+ breast cancer,

Phase I/
II
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lymphoma, and solid
tumors

PX866 Oncothyreo
n

Pan-PI3K GBM, NSCLC, CRC,
HNSCC, prostate
cancer, and solid tumors

Phase II

GDC-0941 Genentech Pan-PI3K ER+ mBC, Her2+ mBC,
NSCLC, NHL, and solid
tumors

Phase I/
II

GSK2126458 GSK Pan-PI3K Pulmonary fibrosis,
lymphoma and solid
tumors

Phase I

BAY 80-6946 Bayer Pan-PI3K Solid tumors, lymphoma Phase I/II

BYL719 Novartis PI3K
p110α

Solid tumors, mBC,
CRC, GC

Phase I/II

GS-1101
(CAL-101),

Gilead PI3K
p110δ

CLL, NHL, and
hematologic
malignancies

Phase II

AMG319 Amgen PI3K
p110δ

CLL, NHL, and
hematologic
malignancies

Phase I

BEZ235 Novartis PI3K/
mTOR

RCC, prostate cancer,
Leukemia , solid tumors
and mBC

Phase I/II

XL765 Sanofi-
aventis

PI3K/
mTOR

GBM, BC, NSCLC, and
solid tumors

PhaseIb/I
I

GDC-0980 Genentech PI3K/
mTOR

mBC, NHL, RCC,EC,
prostate cancer and
solid tumors

Phase I/
II

SF1126 Semafore PI3K/
mTOR

Solid tumors Phase I

AKT
inhibitors

Perifosine
(KRX-0401)

Keryx AKT CRC, MM, glioma,
hematologic
malignancies,
lymphoma, OC, BC,
NSCLC, RCC, sarcoma,
and solid tumors

Phase
II/III

AZD5363 AstraZeneca AKT BC, OC, CC, prostate
cancer, solid tumors

Phase I/II

GDC-0068 Genentech AKT Prostate cancer, GC,
Solid tumors

Phase I/II

MK2206 Merck AKT BC, pancreatic cancer,
GC, NSCLC, lymphoma,
solid tumors

Phase II

RX-0201 Rexahn AKT Pancreatic cancer Phase II

GSK2110183 GSK AKT MM, OC, CLL,
hematologic
malignancies, and
Langerhans cell
histiocytosis

Phase I/II

GSK2141795 GSK AKT CC, CRC, melanoma,
OC,lymphoma and solid
tumors

Phase I/II

LY2780301 Eli Lily P70S6K/
AKT

BC, NHL Phase I/II

PBI-05204 Phoenix
Biotechnolo
gy

AKT Solid tumors Phase I

VD-0002 VioQuest AKT Solid tumors and
hematologic
malignancies

Phase I

BAY1125976 Bayer AKT Solid tumors Phase I

SR13668 NCI AKT Phase I

MKC-1 EntreMed AKT/
mTOR

EC, OC, NSCLC, BC,
pancreatic cancer, and
CRC

Phase II

Table 1:Inhibitors targeting PI3K/AKT pathway in clinical
development CC, Cervical cancer, CLL, chronic lymphocytic
leukemia; CRC, colorectal carcinoma; EC, endometria cancer; ER,
estrogen receptor; GC, gastric cancer, GBM, glioblastoma; HCC,
hepatocellular carcinoma; Her2, human epidermal growth factor
receptor-2; HNSCC, head and neck squamous cell carcinoma; HR,
hormone receptor; mBC, metastatic breast cancer; MM, multiple
myeloma; NHL, Non-Hodgkin's lymphoma; NSCLC, non-small cell
lung cancer; OC, ovarian cancer; PI3K, phosphatidylinositol 3-kinase;
PNET, pancreatic neuroendocrine tumors; RCC, renal cell carcinoma;
SEGA, subependymal giant cell astrocytoma.

mTOR Inhibitors
Everolimus is a mTORC1 selective inhibitor and has been tested in

GC patients in phase II and phase III trials. In the recent phase II trial,
everolimus demonstrated anti-tumor activity with a response rate of
3.7% (2/44) and a disease control rate (DCR) of 38.9% (17/44) [53].
However, a everolimus phase III study failed to achieve a survival
benefit in comparison with the best supportive care (BSC) in
previously treated advanced GC cases [54]. Although the phase II trial
failed to achieve its primary objective, the observed association
between high levels of pS6 expression (Ser240/4) at baseline and
higher DCR and prolonged PFS warrant further trials with a
molecular-stratification-based patient selection strategy. Because
eveolimus suppresses only mTORC1 and the feedback activation of
MAPK may limit its anti-tumor potency [55], a few inhibitors of both
mTORC1 and mTORC2 with improved potency (e.g., OSI-027,
BEZ235, XL765, AZ8055, and Ink128) are being currently evaluated in
phase I/II trials for patients with solid tumors.

PI3KCA Inhibitors
There are two types of PI3K inhibitors targeting the p110 catalytic

subunit that are currently under clinical development: pan-PI3K
inhibitors and isoform-specific PI3K inhibitors.Pan-PI3K inhibitors
are active against all family members of PI3K, whereas isoform specific
inhibitors selectively inhibit p110α, β, or δ. These include the pan-
PI3K inhibitors BKM120 (Novartis), PX-886 (Oncothyreon), XL147
(SAR245408; Sanofi) and the p110a selective inhibitors BYL719,
GDC0032, and INK1117 etc. [56].Because the catalytic domains of
p110 and mTOR are structurally similar and mTOR activation is the
downstream event of the PI3K/AKT pathway, it is expected that the
dual inhibition of these targets may be more effective. Some of the dual
PI3K/mTOR inhibitors currently being investigated in clinical trials
include BEZ235, XL765, GDC-0980, GDC0084, SF1126, and PF-46915
etc. [57]. The clinical anti-tumor activity of some of these inhibitors
has been reported [58].
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AKT Inhibitors
AKT plays a central role in the activation of the PI3K/AKT pathway

to facilitate cellular survival and suppress cell apoptosis. A number of
AKT inhibitors have entered clinical trials. These include the allosteric
inhibitors perifosine (Keryx Biopharmaceuticals) and MK-2206
(Merck) and the ATP competitive inhibitors AZD5363, GSK690693
and GDC0068 etc. Previously, we reported the development of
AZD5363 and demonstrated its activity in GC cell lines [31,44]. Recent
phase I data indicated that AZD5363, as a monotherapy, led to partial
responses in two patients harboring tumor mutations in either AKT1
or PI3KCA [59].

Future Direction
For patients with metastatic or recurrent GC, the evidence supports

the use of chemotherapy to prolong survival and maintain quality of
life. However, the long-term outcomes of chemotherapy treatments
are poor, suggesting the need for novel targeted agents that may confer
a greater survival benefit. The critical role of the activation of the
PI3K/AKT signaling pathway in both tumorigenesis and drug
resistance has been well-documented. A number of small molecule
inhibitors of PI3K, AKT, or mTOR are at various stages of drug
development for the treatment of solid tumors, including GC (Table
1). Because the activations of AKT and mTOR have been commonly
detected in human GC, it is expected that agents against the
PI3K/AKT pathway alone or in combination with current therapies
will provide viable options for the treatment of advanced
GC.However, there are still challenges ahead in terms of their clinical
application. First, the results of the phase III everolimus trial in GC
cases without patient selection were disappointing. Second, the
preclinical data indicated that only PI3KCA mutations were predictive
of a response to AKT inhibitor (31).Thus, it is critical to validate and
implement biomarkers and assays for the selection of patients with a
predictive response to the therapy. Another approach for improving
efficacy is to combine the inhibitors of the PI3K/AKT pathway with
chemo or other targeted agents. Preclinical translational studies based
on rational design and the safety profiles of the inhibitors will help in
choosing the right agents and combinations.
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