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Editorial

PD-1 Pathway Inhibition and MSI-H CRC
In patients with microsatellite instability-high (MSI-H) metastatic

colorectal cancer (CRC), the inhibition of programmed death-1 (PD-1)
pathway has achieved promising response [1]. PD-1 is an immune
inhibitory receptor, expressed in many cells, including T cells. Its
ligand, PD-L1, is expressed on surface of several cell types, especially
tumor cells. When PD-L1 binds to PD-1, an inhibitory signal is
transmitted into the T cell, which suppresses T-cell proliferation. MSI-
H metastatic CRC gives rise to high percentage of mutations which is
proportional to mutational load. High mutational load of MSI-H CRC
correlates with increased PD-L1 expression which indicates a higher
likelihood of response to PD-1 inhibitors, compared to microsatellite
instability-stable (MSI-S) CRC [2-4]. Thus, MSI-H CRC could respond
to single agent PD-1 pathway inhibition.

PD-1 Pathway Inhibition and MSI-S CRC
However, MSI-H only comprises of 15% of metastatic CRC. The

majority of patients have MSI-S disease. Microsatellite instability is a
genomic instability associated with defective DNA mismatch repair
that occurs during the replication of DNA, and is characterized by the
accelerated accumulation of nucleotide mutations in repetitive
microsatellite sequences [5]. MSI-H indicates instability of >30% of
loci in large panel of mononucleotide repeats or dinucleotide repeats.
MSI-S is defined as having instability of <10% of loci [6]. MSI-S
metastatic CRC patients have shown minimal response to PD-1
pathway inhibitors [7].

Rationale of PD-1 Pathway Inhibition in MSI-H CRC
In order to utilize immunotherapy in MSI-S CRC, we need to first

understand the rationale that leads to efficacy of single agent PD-1
pathway inhibitors in MSI-H CRC. Several studies indicate that tumors
with a high mutational load trigger high frequency of CD8+ T cell
response and are therefore sensitive to PD-1 pathway inhibitors.
Mutational load is a set of somatic, non-synonymous, exonic
mutations of each gene. The high frequency of gene mutations among
cancers increases the likelihood of neoantigens generation.
Neoantigens are non-self antigens. The more neoantigens a tumor
contains, the higher the possibility for the tumor to be recognized by
the immune system [8]. This is a major reason why tumors with high
mutational load such as melanoma and non-small cell lung cancer
respond remarkably well to single agent PD-1 pathway inhibition [9].

On the other hand, mutational load is not the only factor that
determines tumor response to PD-1 pathway blockade. Any tumors

with low mutational load but high percentage of PD-L1 expression can
also yield meaningful response to single agent PD-1 pathway
inhibition [10]. For instance, urothelial cancers tend to have a low
mutational load, yet the expression of PD-L1 can be as high as above
80% and PD-1 pathway inhibitor as a single agent improves overall
survival (OS) in such patient population [11]. PD-L1 expression is
demonstrated by immunohistochemical (IHC) staining. IHC data is
assessed using the semi-quantitative immunoreactive score (IRS). This
IRS score is calculated by multiplying the staining intensity (graded as
follows: 0=no, 1=weak, 2=moderate, 3=strong staining) and the
percentage of positively stained cells (0=less than 10% of stained cells,
1=11-50% of stained cells, 2=51-80% of stained cells, 3=more than 81%
of stained cells) [11,12]. Such evidence indicates contribution of PD-L1
overexpression in response to PD-1 pathway inhibition [6].

In MSI-H tumors, high mutational load indicates a vigorous
immune microenvironment that upregulates PD-L1 overexpression
[13]. In addition to a high mutational load and PD-L1 overexpression,
CD8+ cytotoxic T cells are frequently found in the microenvironment
in MSI-H tumors.

Strategies to Enhance Activity of PD-1 Pathway
Inhibition in MSI-S CRC

On the contrary, MSI-S tumors have less mutational load than MSI-
H tumors, and possesses less numbers of tumor infiltrating CD8+
cytotoxic T cells, which could contribute to poor response to PD-1
pathway inhibition [14,15]. Such observation was demonstrated in
other animal tumor models with intrinsically low mutational load such
as pancreatic cancer. A study examining pancreatic cancer specimens
from patients demonstrated the shortest OS in the group with low
CD8+ T cell infiltration and high PD-L1 expression. When murine
pancreatic cancer cell lines were subcutaneously injected into mice, a
pancreatic mouse model was created to mimic low CD8+ T cell
infiltration and high PD-L1 expression [16]. Vaccination of such
mouse model using live MC 57-SIY peptide synthesized by f-moc
chemistry increased CD8+ T cell infiltration, and the addition of PD-
L1 blockade to vaccination enhanced the effector function of tumor-
infiltrating T cells [16]. Providing CD8+ T cell infiltration into tumor
with low mutational load was essential to elicit a synergistic immune
response with immunotherapies, which was demonstrated in a phase
IIA study of 2nd line metastatic pancreatic cancer patients. All patients
were initially treated with the combination of cyclophosphamide (CY)
and GVAX. Cyclophosphamide was used to deplete
immunosuppressive regulatory T cells, and GVAX is a whole cell
vaccine expressing human granulocyte macrophage-colony stimulating
factor (GM-CSF) that stimulates the body's immune responses against
tumor cells. Listeria monocytogenes vaccine (CRS-207) induces robust
CD8+ T-cell immunity by targeting dendritic cells. Patients were
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randomized to receive CY/GVAX followed by CRS-207 or CY/GVAX.
All patients achieved increased number of CD8+ T cells. Only the
group treated with CY/GVAX and CRS-207 improved OS compared to
CY/GVAX alone [17].

In a study of 389 CRC patient specimens, where 55% were stage III
and IV, more CD8+ T lymphocytes were found in the MSI-H group
compared to the MSI-S group [18]. High tumor-infiltrating CD8+ T
cell lymphocytes were associated with a favorable outcome in MSI-H
CRC patients. Tumors with low levels of CD8+ T lymphocytes had
poor prognosis, regardless of PD-L1 expression [19].

One effective strategy to enhance the activity of immunotherapy in
MSI-S CRC patients directs at tumor infiltrating lymphocytes. In
immunocompetent tumor-bearing mice model, treatment with
mitogen/extracellular signal regulated kinase inhibitor (MEKi) led to a
decrease in phosphorylated extracellular signal-regulated kinase
(ERK). Such effect in turn resulted in the expansion of T cell clones
and accumulation of tumor-infiltrating CD8+ T cell effectors that
target the tumor, including expression of T-bet and Eomes that control
CD 8+ T cell differentiation [20]. Therefore, MEKi provides a higher
number of CD8+ T cells and maintains CD8+ T cell activity to
optimize PD-1 pathway inhibition in MSI-S CRC [20].

A recent phase Ib trial in patients with MSI-S CRC utilized the
above strategy to explore the activity of combination therapy using
MEKi and PD-L1 inhibitor [21]. In this study, 4 of 23 patients (17%)
achieved partial response (PR), and 5 of 23 patients (22%) had stable
disease (SD) which lasted up to 15 months. Part of the rationale for
such combination to work depends on the increase in CD 8+ T cell
quantity and quality in MSI-S CRC. However, it also reveals an
opportunity to explore another approach for 61% of the patients (14 of
23) who showed no response to this therapeutic strategy.

Beyond MEKi and PD-1 Pathway Inhibition in MSI-S
CRC

Are there alternative pathways that MSI-S tumors can exploit to
bypass the effects of MEKi and PD-1 pathway inhibitors? Current
understanding regarding resistance to MEKi includes restoration of
ERK and cross talk between MEK and phosphoinositide-3-OH kinase
(PI3K) [22]. Human genome study of CRC showed that nearly 40% of
colorectal tumors habor alterations in PI3K pathway genes. Most of
these encode protein kinases could serve as targets for therapeutic
intervention [23]. Phosphatase and tensin homolog (PTEN) is an
important tumor suppressor gene which primarily negatively regulates
PI3K-pathway. Downregulation of PTEN expression correlated with
increased PD-L1 expression in a study of CRC patient specimens [24].
This study suggested a correlation between PTEN loss and poor
prognosis in CRC. It hints that restoration of PTEN function could
enhance the activity of PD-1 inhibition.

MEKi in combination with PI3K inhibitor demonstrated synergy in
tumor inhibition and induction of apoptosis in MEKi-resistant human
colorectal cancer cells. Dual blockade of MEK and PI3K pathways
could overcome resistance to MEK inhibition [25]. Triple therapy that
includes MEKi, PD-1 pathway inhibition and PI3K inhibitor could be
explored in MSI-S patients.

Conclusion
Immunotherapy in MSI-S CRC is promising using combination

therapy strategies to allow increase in quantity or activity of tumor

infiltrating T cells. In addition, a strategy to increase mutational load
represented by neoantigens can also be a potential combination
approach for MSI-S CRC.
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