

Targeting the PD-1 Pathway in MSI-Stable Metastatic Colorectal Cancer

Kaijun Huang 1 and Jennifer $\mbox{Wu}^{2^{\star}}$

¹Department of Medicine, NYU Lutheran Medical Center, Brooklyn, NY, USA

²Department of Medicine, Division of Hematology-Oncology, Laura and Isaac Perlmutter Cancer Center, New York, NY, USA

*Corresponding author: Jennifer Wu, Department of Medicine, Division of Hematology-Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine 462 First Avenue, New York, NY 10016, Tel: 212-263-6485; E-mail: jennifer.wu@nyumc.org

Received date: January 05, 2017; Accepted date: February 10, 2017; Published date: February 17, 2017

Copyright: © 2017 Huang K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

PD-1 Pathway Inhibition and MSI-H CRC

In patients with microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC), the inhibition of programmed death-1 (PD-1) pathway has achieved promising response [1]. PD-1 is an immune inhibitory receptor, expressed in many cells, including T cells. Its ligand, PD-L1, is expressed on surface of several cell types, especially tumor cells. When PD-L1 binds to PD-1, an inhibitory signal is transmitted into the T cell, which suppresses T-cell proliferation. MSI-H metastatic CRC gives rise to high percentage of mutations which is proportional to mutational load. High mutational load of MSI-H CRC correlates with increased PD-L1 expression which indicates a higher likelihood of response to PD-1 inhibitors, compared to microsatellite instability-stable (MSI-S) CRC [2-4]. Thus, MSI-H CRC could respond to single agent PD-1 pathway inhibition.

PD-1 Pathway Inhibition and MSI-S CRC

However, MSI-H only comprises of 15% of metastatic CRC. The majority of patients have MSI-S disease. Microsatellite instability is a genomic instability associated with defective DNA mismatch repair that occurs during the replication of DNA, and is characterized by the accelerated accumulation of nucleotide mutations in repetitive microsatellite sequences [5]. MSI-H indicates instability of >30% of loci in large panel of mononucleotide repeats or dinucleotide repeats. MSI-S is defined as having instability of <10% of loci [6]. MSI-S metastatic CRC patients have shown minimal response to PD-1 pathway inhibitors [7].

Rationale of PD-1 Pathway Inhibition in MSI-H CRC

In order to utilize immunotherapy in MSI-S CRC, we need to first understand the rationale that leads to efficacy of single agent PD-1 pathway inhibitors in MSI-H CRC. Several studies indicate that tumors with a high mutational load trigger high frequency of CD8+ T cell response and are therefore sensitive to PD-1 pathway inhibitors. Mutational load is a set of somatic, non-synonymous, exonic mutations of each gene. The high frequency of gene mutations among cancers increases the likelihood of neoantigens generation. Neoantigens are non-self antigens. The more neoantigens a tumor contains, the higher the possibility for the tumor to be recognized by the immune system [8]. This is a major reason why tumors with high mutational load such as melanoma and non-small cell lung cancer respond remarkably well to single agent PD-1 pathway inhibition [9].

On the other hand, mutational load is not the only factor that determines tumor response to PD-1 pathway blockade. Any tumors

with low mutational load but high percentage of PD-L1 expression can also yield meaningful response to single agent PD-1 pathway inhibition [10]. For instance, urothelial cancers tend to have a low mutational load, yet the expression of PD-L1 can be as high as above 80% and PD-1 pathway inhibitor as a single agent improves overall survival (OS) in such patient population [11]. PD-L1 expression is demonstrated by immunohistochemical (IHC) staining. IHC data is assessed using the semi-quantitative immunoreactive score (IRS). This IRS score is calculated by multiplying the staining intensity (graded as follows: 0=no, 1=weak, 2=moderate, 3=strong staining) and the percentage of positively stained cells (0=less than 10% of stained cells, 1=11-50% of stained cells, 2=51-80% of stained cells, 3=more than 81% of stained cells) [11,12]. Such evidence indicates contribution of PD-L1 overexpression in response to PD-1 pathway inhibition [6].

In MSI-H tumors, high mutational load indicates a vigorous immune microenvironment that upregulates PD-L1 overexpression [13]. In addition to a high mutational load and PD-L1 overexpression, CD8+ cytotoxic T cells are frequently found in the microenvironment in MSI-H tumors.

Strategies to Enhance Activity of PD-1 Pathway Inhibition in MSI-S CRC

On the contrary, MSI-S tumors have less mutational load than MSI-H tumors, and possesses less numbers of tumor infiltrating CD8+ cytotoxic T cells, which could contribute to poor response to PD-1 pathway inhibition [14,15]. Such observation was demonstrated in other animal tumor models with intrinsically low mutational load such as pancreatic cancer. A study examining pancreatic cancer specimens from patients demonstrated the shortest OS in the group with low CD8+ T cell infiltration and high PD-L1 expression. When murine pancreatic cancer cell lines were subcutaneously injected into mice, a pancreatic mouse model was created to mimic low CD8+ T cell infiltration and high PD-L1 expression [16]. Vaccination of such mouse model using live MC 57-SIY peptide synthesized by f-moc chemistry increased CD8+ T cell infiltration, and the addition of PD-L1 blockade to vaccination enhanced the effector function of tumorinfiltrating T cells [16]. Providing CD8+ T cell infiltration into tumor with low mutational load was essential to elicit a synergistic immune response with immunotherapies, which was demonstrated in a phase IIA study of 2nd line metastatic pancreatic cancer patients. All patients were initially treated with the combination of cyclophosphamide (CY) and GVAX. Cyclophosphamide was used to deplete immunosuppressive regulatory T cells, and GVAX is a whole cell vaccine expressing human granulocyte macrophage-colony stimulating factor (GM-CSF) that stimulates the body's immune responses against tumor cells. Listeria monocytogenes vaccine (CRS-207) induces robust CD8+ T-cell immunity by targeting dendritic cells. Patients were randomized to receive CY/GVAX followed by CRS-207 or CY/GVAX. All patients achieved increased number of CD8+ T cells. Only the group treated with CY/GVAX and CRS-207 improved OS compared to CY/GVAX alone [17].

In a study of 389 CRC patient specimens, where 55% were stage III and IV, more CD8+ T lymphocytes were found in the MSI-H group compared to the MSI-S group [18]. High tumor-infiltrating CD8+ T cell lymphocytes were associated with a favorable outcome in MSI-H CRC patients. Tumors with low levels of CD8+ T lymphocytes had poor prognosis, regardless of PD-L1 expression [19].

One effective strategy to enhance the activity of immunotherapy in MSI-S CRC patients directs at tumor infiltrating lymphocytes. In immunocompetent tumor-bearing mice model, treatment with mitogen/extracellular signal regulated kinase inhibitor (MEKi) led to a decrease in phosphorylated extracellular signal-regulated kinase (ERK). Such effect in turn resulted in the expansion of T cell clones and accumulation of tumor-infiltrating CD8+ T cell effectors that target the tumor, including expression of T-bet and Eomes that control CD 8+ T cell differentiation [20]. Therefore, MEKi provides a higher number of CD8+ T cells and maintains CD8+ T cell activity to optimize PD-1 pathway inhibition in MSI-S CRC [20].

A recent phase Ib trial in patients with MSI-S CRC utilized the above strategy to explore the activity of combination therapy using MEKi and PD-L1 inhibitor [21]. In this study, 4 of 23 patients (17%) achieved partial response (PR), and 5 of 23 patients (22%) had stable disease (SD) which lasted up to 15 months. Part of the rationale for such combination to work depends on the increase in CD 8+ T cell quantity and quality in MSI-S CRC. However, it also reveals an opportunity to explore another approach for 61% of the patients (14 of 23) who showed no response to this therapeutic strategy.

Beyond MEKi and PD-1 Pathway Inhibition in MSI-S CRC

Are there alternative pathways that MSI-S tumors can exploit to bypass the effects of MEKi and PD-1 pathway inhibitors? Current understanding regarding resistance to MEKi includes restoration of ERK and cross talk between MEK and phosphoinositide-3-OH kinase (PI3K) [22]. Human genome study of CRC showed that nearly 40% of colorectal tumors habor alterations in PI3K pathway genes. Most of these encode protein kinases could serve as targets for therapeutic intervention [23]. Phosphatase and tensin homolog (PTEN) is an important tumor suppressor gene which primarily negatively regulates PI3K-pathway. Downregulation of PTEN expression correlated with increased PD-L1 expression in a study of CRC patient specimens [24]. This study suggested a correlation between PTEN loss and poor prognosis in CRC. It hints that restoration of PTEN function could enhance the activity of PD-1 inhibition.

MEKi in combination with PI3K inhibitor demonstrated synergy in tumor inhibition and induction of apoptosis in MEKi-resistant human colorectal cancer cells. Dual blockade of MEK and PI3K pathways could overcome resistance to MEK inhibition [25]. Triple therapy that includes MEKi, PD-1 pathway inhibition and PI3K inhibitor could be explored in MSI-S patients.

Conclusion

Immunotherapy in MSI-S CRC is promising using combination therapy strategies to allow increase in quantity or activity of tumor

infiltrating T cells. In addition, a strategy to increase mutational load represented by neoantigens can also be a potential combination approach for MSI-S CRC.

References

- Rosenbaum MW, Bledsoe JR, Morales-Oyarvide V, Huynh TG, Mino-Kenudson M (2016) PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes. Mod Pathol 29: 1104-1112.
- 2. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138: 2073-2087.
- 3. Spethane C, Charles F, Lebel-Binay S, Eggermont A, Soria JC (2014) Exomics and immunogenics; bridging mutational load and immune checkpoints efficacy. Oncoimmunology 3: e27817.
- Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 372: 2509-2520.
- Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, et al. (1998) A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of Microsatellite Instability in Colorectal Cancer. Cancer Res 58: 5248-5257.
- 6. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancerthe stable evidence. Nat Rev Clin Oncol 7: 153-162.
- Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, et al. (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366: 2455-2465.
- Roszik J, Haydu LE, Hess KR, Oba J, Joon AY, et al. (2016) Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set. BMC Medicine 14: 168.
- Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, et al. (2013) Signatures of mutational processes in human cancer. Nature 500: 415-421.
- Chen DS, Irving BA, Hodi FS (2012) Irving et al. Molecular pathways: next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18: 6580-6587.
- Wu CT, Chen WC, Chang YH, Lin WY, Chen MF (2016) The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci Rep 6: 19740.
- 12. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, et al. (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515: 558-562.
- Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, et al. (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints.Cancer Discov 5: 43-51.
- 14. Karaki S, Anson M, Tran T, Giusti d, Blanc C, et al. (2016) Is there still room for cancer vaccines at the era of checkpoint inhibitors.Vaccines (Basel) 4: E37.
- 15. Dolcetti R, VielA, Doglioni C, Russo A, Guidoboni M, et al. (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154: 1805-1813.
- Zheng W, Skowron KB, Namm JP, Burnette B, Fernandez C, et al. (2016) Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7: 43039-43051.
- 17. Chan W, Eric L, Nair N, Chang S, Lemmens E, et al. (2015) Phase II, randomized study of GVAX pancreas and CRS-207 immunotherapy in patients with metastatic pancreatic cancer: Clinical update on long term survival and biomarker correlates to overall survival. J ClinOncol 33: abstr 261.

Page 3 of 3

- Deschoolmeester V, Baay M, Lardon F, Pauwels P, Peeters M (2011) Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. Cancer Microenviron 4: 377-392.
- Lee LH, Cavalcanti MS, Segal NH, Hechtman JF, Weiser MR, et al. (2016) Patterns and prognostic relevance of PD-1 and PD-L1 expression in colorectal carcinoma. Mod Pathol 29: 1433-1442.
- Ebert PJ, Cheung J, Yang Y, McNamara E, Hong R, et al. (2016) MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity 44: 609-621.
- 21. Johanna B, Tae WK, Goh BC, Wallin J, Youn Oh D, et al. (2016) Safety and efficacy of cobimetinib (cobi) and atezolizumab (atezo) in a phase 1b study of metastatic colorectal cancer (mCRC). World GI 2016 press release.
- 22. Temraz S, Mukherji D, Shamseddine A (2015) Dual Inhibition of MEK and PI3K Pathway in KRAS and BRAF Mutated Colorectal Cancers. Int J Mol Sci 16: 22976-22988.

- 23. Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, et al. (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436: 792.
- Song M, Chen D, Lu B, Wang C, Zhang J, et al. (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One 8: e65821.
- 25. Martinelli E, Troiani T, D'Aiuto E, Morgillo F, Vitagliano D, et al. (2013) Antitumor activity of pimasertib, a selective MEK 1/2 inibitor,in combination with PI3K/mTOR inhibitors or with multi-targeted kinase in pimasertib-resistant human lung and colorectal cancer cells. Int J Cancer 133: 2089-2101.