

Targeting SOAT1 Ameliorates Hepatocellular Carcinoma by Apoptosis after Comprehensive Analysis for MBOAT Family Genes

Ming Han Wang¹, Ying Jiang², Quan Jun Wang^{1*}

¹National Center for Drug Safety Evaluation Health, Institute of Toxicology and Drug Research, Academy of Military Medical Sciences, Beijing 100039, China;²National Protein Research Center of Functional Protein, Academy of Military Medical Sciences, Beijing 100039, China

ABSTRACT

Background: Despite the largely number of studies on Hepato Cellular Carcinoma (HCC) over past decades, little development had been made because of futile treatment regimens. Here we discussed the expression level, transcriptional and survival data, mutation, and clinical significance of the MBOATs family in patients with HCC to find SOAT1 as a scientific evidence for clinical risk management and decisions effectively.

Methods: HCC samples were extracted from the cBioPortal databases; LinkedOmics, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, The Cancer Genome Atlas (TCGA), and R software (×64 3.6.2) were used to comprehensively analyze the roles of MBOATs. p value below to 0.05 was considered statistically significant. TEM imaging, Tunnel, Cell viability and migration assay and so on are also used in this study.

Results: In total, 369 HCC tissues and 160 paracancerous tissues were included. The expression levels of MBOAT7, SOAT1, HHAT, DGAT1, and PORCN were higher in HCC tissues than those in normal liver tissue. Gene enrichment analysis revealed that MBOATs played a critical role in apoptosis signaling pathway. Through a comprehensive analysis of the MBOAT family we found a high SOAT1 expression was obviously related with poor OS and DSS in all of the HCC patients, which seemed consistent with the key role of SOAT1 in MBOAT family as a tumor promoter. Genetic inhibition of SOAT1 effectively suppresses tumor growth and induces apoptosis in both *in vitro* and *in vivo*. Eventually, we found that targeting SOAT1 promoted ROS production will induce mitochondrial damage and apoptosis in tumor cells and markedly suppressed HCC growth.

Conclusions: This is the first time to find the most effective target SOAT1 in the gene family MBOATs. Our results strongly indicated a crucial role of the MBOAT family in HCC, especially SOAT1. SOAT1 could be potential prognostic and predictive markers, and might also function as a potential therapeutic target in HCC by apoptotic pathway induced by ROS and mitochondrial damage.

Keywords: Hepatocellular carcinoma; TCGA; MBOATs; SOAT1; Prognosis

INTRODUCTION

Membrane-bound O-Acyltransferases (MBOATs) comprises more than 7,000 proteins (http://pfam.xfam.org/family/MBOAT). They are a super group of integral trans membrane enzymes both in bacteria and vertebrates [1] with distinct substrate preferences, and can be subdivided into some groups based on their divergent functions. Membrane-bound O-Acyltransferases (MBOATs), a group of integral transmembrane enzymes that perform divergent functions which are attractive drug targets in cancer. 11 of MBOAT proteins (MBOAT1, MBOAT2, HHATL, GOAT, LPCAT3, MBOAT7, SOAT1, SOAT2, HHAT, DGAT1 and PORCN) are located in the progression of various cancer types, especially in HepatoCellular Carcinoma (HCC). Although these proteins

Correspondence to: Quan Jun Wang, National Center for Drug Safety Evaluation Health, Institute of Toxicology and Drug Research, Academy of Military Medical Sciences, Beijing 100039, China, E-mail: Quanjunwangbeijing@163.com

Received: 03-Oct-2022, Manuscript No. JPB-22-19474; Editor assigned: 06-Oct-2022, PreQC No. JPB-22-19474 (PQ); Reviewed: 20-Oct-2022, QC No. JPB-22-19474; Revised: 27-Oct-2022, Manuscript No. JPB-22-19474 (R); Published: 03-Nov-2022, DOI: 10.35248/ 0974-276X.22.15.610

Citation: Wang QJ, Wang MH, Jiang Y (2022) Targeting SOAT1 Ameliorates Hepatocellular Carcinoma by Apoptosis after Comprehensive Analysis for MBOAT Family Genes. J Proteomics Bioinform.15:610

Copyright: © 2022 Wang QJ, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

are important drug targets, the diverse expression patterns and prognostic values have yet to be analyzed. DiacylGlycerol Acyltransferase 1 (DGAT1) and Sterol O-AcylTransferase (SOAT)—are responsible for phospholipid remodelling or lipid biosynthesis [2,3]. Ghrelin AcylTransferase (GOAT), Porcupine (PORCN) and HedgeHog AcylTransferase (HHAT) catalyze essential lipid modifications of secreted proteins respectively, such as hedgehog, WNT and ghrelin [4-10].

MBOAT family members play a significant role in catalysis because of a strictly conserved histidine residue. Mutation of the corresponding histidine residue either abolished or substantially reduced the acyltransferase activities of the enzymes in Diacylglycerol Acyltransferase-1 (DGAT1) and Sterol O-Acyltransferase (SOAT), Ghrelin Acyltransferase (GOAT), Porcupine (PORCN) and Hedgehog Acyltransferase (HHAT) [11-16]. The expression of some MBOAT proteins are deregulated in several human malignancies, including Chronic Lymphocytic Leukemia (CLL), Pancreatic Ductal Adeno Carcinoma (PDAC), prostate cancer, clear cell Renal Carcinoma (ccRCC), Glioblastoma (GBM), breast cancer and Hepatocellular Carcinoma (HCC) [17-23].

Hepatocellular Carcinoma is the fourth most common cause of cancer-related death worldwide and the leading cause of cancerrelated death around the world. Early-stage HCC is amenable to potentially curative treatment, which includes local ablation, surgical resection and liver transplantation [24]. HCC has identified six robust subgroups designated as G1-G6 which are associated with specific genetic and clinical characteristics [25,26]. Mutations in the TERT promoter (occurring in 44-65% of patients with HCC and encodin transcription of the catalytic subunit of telomerase), gregulating CTNNB1 (27-40%, l-catenin, a proto-oncogene in the WNT signaling pathway) and TP53 (21-31%, the master cell cycle regulator) are the most conventional [27,28]. Despite the headways made in HCC management, including noninvasive radiological diagnosis and more availability treatment options over the past few decades, of which only overall rate of survival after developing this cancer [29]. Due to the heterogeneity of tumor, some boundedness still exists in biomarkers that forecast prognosis. What's more, the data source for analysis should include not only m-RNA data, but also proteome data to evaluate the value of new biomarkers in tumor diagnosis and personalized treatment comprehensively and objectively.

To date, eleven MBOAT family genes relevent with cancer have been selected: MBOAT1, MBOAT2, *HHATL* (MBOAT3), GOAT (MBOAT4), LPCAT3 (MBOAT5), MBOAT7, SOAT1, SOAT2, *HHAT*, *DGAT1* and *PORCN*. They are supposed to have luxary and distinct roles in human cancer. MBOAT1 was reported to be involved in CLL17. Liviu Badea et al. [18] reported MBOAT2 upregulate and cause epithelial mesenchymal transformation in PDAC. *HHATL* (MBOAT3) command cell wall integrity and programme cell death [30]. GOAT (MBOAT4) is associated with patient's metabolic status, which is a non-invasive biomarker, potentialiy [19]. LPCAT3 (MBOAT5) is a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and promotes atherosclerosis [31]. MBOAT7 driven

OPEN OACCESS Freely available online

phosphatidylinositol remodeling promotes the progression of clear cell renal carcinoma [20]. SOAT1 has recently been a potential therapeutic window for pancreatic carcinoma [32]. In addition, it was also reported to promote tumor growth and metastasis, indicating SOAT1 had an oncogenic role in HCC [23]. Leptin promotes the migration and invasion of breast cancer cells by up regulating ACAT222, indicating that ACAT2 plays an oncogenic role in breast cancer. PKC1-SOX2- *HHAT* signaling cooperate to activate Hedgehog signaling in lung squamous cell carcinoma [33]. Targeting *DGAT1* Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress [21]. Madan B et al. [34] demonstrate that dual *PORCN* and PI3K/mTOR inhibition is a potential strategy for treating WNT-driven pancreatic cancers.

Although these proteins have important roles in a variety of human cancer, the diverse expression patterns and prognostic values in HCC have yet to be analyzed, in addition, the underlying mechanism and the distinct functions of the MBOAT family genes in HCC have yet to be fully elucidated. As far as we know, bioinformatics analysis has yet to be applied to explore the role of MBOATs in HCC. As an essential component of biological and biomedical studies RNA and DNA research have been revolutionized with the development of microarray technology [35]. The dysregulated expression levels of MBOAT family genes and their relationship with clinicopathological features and prognosis have been reported in HCC, solely. To the best of our knowledge, there are presently no studies assessing the role of the MBOAT family in HCC systematically to find effective biological target using bioinformatics approach. Herein, we aimed to investigate the expression level, mutation, and clinical significance of the MBOAT family in HCC, and then find a most effective biotarget so as to establish a sufficient evidence for clinical decisions and risk management.

MATERIALS AND METHODS

Ethics statement

This study was approved by the Academic Committee of Academy of Military Medical Sciences, and it was conducted according to the principles expressed in the Declaration of Helsinki. All the datasets came from the published literature, so all written informed consent was getatable.

Gene expression profiling interactive analysis (GEPIA Dataset)

GEPIA is a multidimensional cancer genomics dataset for analyzing the mass RNA sequencing expression data from the The Cancer Genome Atlas and the Genotype-Tissue Expression (GTEx) projects (http://gepia.cancer-pku.cn/). GEPIA provides customizable roles to evaluate the gene expression differences between HCC and normal tissues according to the Analysis of Variance (ANOVA), tumor/normal diversely expression analysis, profiling according to tumor types or pathological stages, patient survival analysis, similar gene detection, correlation analysis, and dissimilarly reduction analysis. The correlation between MBOATs and clinical stage was also evaluated using GEPIA, and the statistical method used was Pearson correlation coefficient.

The cancer genome atlas data and cBioPortal

30 different cancers had both sequencing and pathological data in The Cancer Genome Atlas. Then use cBioPortal (http:// www.cbioportal.org/) for further analyses of MBOATs. The genomic profiles included amplifcation, Putative Copy Number Alterations (pCNAs), mRNA expression Z scores (RNA-seq v.2 RSEM), and protein expression Z scores (Reverse Phase Protein Array (RPPA). An overview of genetic alteration of each MBOAT family member was also provided to show all details of each type of mutation in each individual sample. Co-expression and network were calculated according to the cBioPortal's online instructions.

The Kaplan-Meier plotter

The prognostic value of signal transducer and activator of transcription mRNA expression was estimated using an online database, Kaplan-Meier Plotter (www.kmplot.com), which contained different genes expression data and survival information of Hepatocellular Carcinoma patients (http:// kmplot.com/analysis/index.php?p=service&cancer=Hepatocell ular). To analyze the OS, DSS, PFS and RFS of patients with Hepatocellular Carcinoma, the HCC samples were divided into two groups according to the median expression (high versus low expression). Overall Survival (OS) was considered the time to death or the last follow-up time from the initial diagnosis of HCC, whereas Recurrence Free Survival (RFS) was the time to relapse from the diagnosis. The Hazard Ratio (HR) with 95% Confidence Intervals (CIs) and p value had been labeled.

cBioPortal

As an intuitive Web interface cBioPortal was applied to perform gene variation analysis of HCC (http://www.cbioportal.org/), including mutation, amplification, and copy number variation. An overview of genetic alteration of 11 MBOAT family members was also provided to visualize complete details of each type of mutation in each individual sample.

Pather pathway

Using the online LinkedOmics database, we screened the most relevant genes of 11 MBOAT family members. The top 50 genes significantly associated with MBOATs were screened for further. Pather Pathway enrichment analysis were performed in the DAVID database (https://david.ncifcrf.gov/). Signifcant pathway computing was provided in DAVID. The graph of Pather Pathway analysis was plotted by R packages named ggplot2 in the R software (×64 3.6.2) LinkedOmics database.

Cell lines

The Huh7 and Hep3B were purchased from Punuosai Co., Ltd. (Cellcook, Wuhan, China). Both cell lines were reported to have passed chlamydia and mycoplasma detection.

RNA interference and transfection

To explore the inhibition efficiency of SOAT1 expression by siRNA, we used small interfering RNA. *si*SOAT1-1 (5'-GCAGAGGAAUUGAAGCCAUTT tt-3'sense, and 5'-AUGGCUUCAAUUCCUCUGCTT tt-3'antisense) siSOAT1-2 (5'-GCACACUUGUAGUAGAUUATT tt-3'sense, and 5'-UAAUCUACUACAAGUGUGCTT tt-3'antisense) siSOAT1-3 (5'-GGACCUGGUGGAUCAUGUUTT tt-3'sense, and 5'-AACAUGAUCCACCAGGUCCTT tt-3'antisense) were purchased from Jima Pharmaceutical Technology Co., LTD (Jimapharmatech, Suzhou, China). 50 nmol/L siRNA was transfected into Huh7 and Hep3B cells using INTERFER in (Polyplus transfection, Suzhou, China) according to the company's protocol.

Western blot analysis

Total protein was incubated with RIPA lysis buffer containing protease inhibitor (Shenggong, Shanghai, China) (Jima,Suzhou, China), and the protein was quantified with Nucleic acid protein analyzer (Biochrom, Simplinano, China). The protein was quantified and then used to perform western blot as usual. Antibodies against SOAT1 and GAPDH were purchased from Merck and Shenggong.

Cell Counting Kit-8 (CCK-8) analysis and cell migration assay

Cell viability was analyzed by cell counting kit-8 (DOJINDO, Kyushu, Japan) according to the matched protocol. In short, Huh7 and Hep3B were seeded in the 96-well plates with 10000 cells/well and 8000 cells/well incubated for overnight, respectively. At 0 h, 24 h, 48 h, 72 h, 10 µl CCK-8 solutions was added to each well, and the cells were incubated for 60 min at 37 °C. Using an IMARK micro plate will help reader (BIO-RAD) to obtain the absorbance at 450 nm. For cell migration assay, we choose coat polycarbonate filters (8 mm; Corning, NY, USA). Incubate cells at 37 °C overnight, and 3 × 105 cells were seeded into the upper chamber with 200 µl serum-free DMEM. 800 µl DMEM with 10% FBS was added to the lower chamber. Then the cultured cells at 37 °C in a 5% CO₂ are used in hydrosphere atmosphere. 24 hours later, the upper chamber was fixed with paraformaldehyde and stained with 0.5% crystal violet. Nonmigration cells were washed, and the cells on the lower surface were counted microscopically.

Univariable and multivariable risk analysis

All the MBOATs that had prognostic impact (OS or RFS) were screened as candidates for univariable and multivariable Cox proportional-hazard regression analysis. HRs and 95% Confidence Interval (CI) were calculated for each factor. SPSS software (IBM SPSS 18.0 for Windows, SPSS Inc., Chicago, IL, USA) was used for statistical analysis.

Correlation analyses

Correlation between every two MBOATs was assessed using a Pearson's correlation coefficient. Statistical analysis and the graph were dealt with R software (×64 3.6.2). p value below to 0.05 was considered as significant correlations.

RESULTS

mRNA expression levels of 11 MBOAT family genes in patients with HCC

We selected eleven common MBOAT family genes by using the

TCGA and published database to contrast the mRNA levels of 11 MBOATs in tumors with paracancerous samples (Table 1). The transcriptional levels of MBOAT1, MBOAT2, *HHATL*, GOAT, LPCAT3, MBOAT7, *DGAT1*, *PORCN* MBOAT1 have no visible difference in all eight datasets. In Roessler's dataset, 39 SOAT1 was found overexpressed in HCC (fold change=1.781). SOAT2 was overexpressed in Wurmbach 36 dataset (fold change=1.697). Noticeably *HHAT* were obviously up regulated in patients with hepatocellular carcinoma in one datasets, (fold change=3.256) [36].

mRNA expression levels of 11 MBOATs in HCC

The GEPIA database was used to determine the mRNA expression levels of 11 MBOATs in HCC (Figure 1A). 369 HCC tissues and 160 paracancerous tissues were included. Compared to paracancerous tissues, the expression levels of MBOAT7, SOAT1, HHAT, DGAT1, and PORCN were significantly elevated (p<0.05). There was no significant difference in expression of the other MBOAT family members (MBOAT1, 2, 4, HHATL, LPCAT3, and SOAT2).

Correlation between MBOATs transcriptional level and clinicopathological parameters of the patients with HCC

We compared transcriptional level of MBOAT family genes between HCC and normal liver tissues with the GEPIA. The results indicated that the expression levels of MBOAT7, SOAT1, HHAT, DGAT1 and PORCN were higher in HCC tissues than in normal tissues (p<0.05) (Figure 1B). By using GEPIA (Gene Expression Profiling Interactive Analysis) dataset (http://gepia. cancer-pku.cn/), we found MBOAT2, GOAT, MBOAT7 have significant relationship between expression and Tumor stage in HCC patients (p<0.05). No significant correlations were observed between other MBOATs and tumor stage (Figure 2). We performed RNA-seq to test MBOAT RNA expression in HCC. RNA-seq data is reported as median FPKM (number Fragments per Kilo base of exon per Million reads), generated by the The Cancer Genome Atlas (TCGA). We found the average FPKM of LPCAT3, SOAT1, SOAT2, MBOAT7 and DGAT up to 4.7, 4.9, 5.2, 10.1, 20, respectively (Figure 3).

Diagnostic and prognostic value of MBOATs with HCC

The key efficiency of MBOATs in relationship between tumor stage and the survival of patients with HCC were examined using the GEPIA database and publicly available datasets Kaplan-Meier Plotter tools. (2015 version; http://kmplot.com/analysis/index. php?p=service&cancer=liver). The raised MBOAT1, 2, 7, SOAT1, PORCN mRNA levels and the declined HHATL, HHAT and LPCAT3 mRNA levels were obviously associated with the Overall Survival (OS), Relapse Free Survival (RFS), Distant Metastasis Free Survival (DSFS) and Post-Progression Survival (PFS) (p<0.05) in the whole patients with hepatocellular carcinoma veiled by the Kaplan-Meier curve and log rank test analyses (Figure 4). The patients with hepatocellular carcinoma with high mRNA levels of the MBOAT1, 2, 7, SOAT1, PORCN factors or inferior mRNA levels of HHATL, HHAT and LPCAT3 were predicted to have high OS, RFS, PFS and DSS. Figure of the whole patients with HCC (Figure 4). The patients with hepatocellular carcinoma with high mRNA levels of the MBOAT1, 2, 7, SOAT1, PORCN factors or inferior mRNA levels of HHATL, HHAT and LPCAT3 were forecasted to have high OS, RFS, PFS and DSS.

Predicted functions and pathways of the changes in MBOATs factors and their frequently altered neighbor genes in HCC

In addition to diagnostic and prognostic value using the Kaplan-Meier Plotter, we also evaluated variations, correlations, networks and the alters in MBOAT family genes and their Frequently Altered Neighbor Genes in Patients with HCC using cBioPortal (The Cancer Genome Atlas, Provisional; (http://www.cbioportal. org/index.do?session_id=5b4c1773498eb8b3d566f7b8).

MBOATs were changed in 289 (20%) of 1461 sequences patients (1461 total) (Figures 5 and 6). We also calculated the correlations of MBOATs with each other by analyzing their mRNA expressions (RNA sequencing (RNA seq) version (vs.) 2 RSEM) *via* the cBioPortal online tool for HCC (The Cancer Genome Atlas, Provisional), and Pearson's correction was included.

Table 1: The Significant mRNA changes of MBOAT expression between different types of hepatocellular carcinoma and normal liver tissues.

Proteins	Type of Hepatocellular Carcinoma versus Normal Liver Tissue	Samples	p Value	t Test	Fold Change	Source and/or Reference	
MBOAT1	Hepatocellular Carcinoma	75	0.474	0.065	1.014	Wurmbach Liver Statistics [36]	
	Hepatocellular Carcinoma	185	2.11E-09	6.439	1.077	Guichard Liver Statistics [37]	
	Hepatocellular Carcinoma	212	1.72E-07	5.477	1.102	TCGA	
	Hepatocellular Carcinoma	197	0.292	0.549	1.049	Chen Liver Statistics[38]	
	Hepatocellular Carcinoma	445	1	-3.554	-1.059	Roessler Liver Statistics [39]	
	Hepatocellular Carcinoma	115	0.999	-3.528	-1.194	Mas Liver Statistics[40]	
	Hepatocellular Carcinoma	52	0.009	2.507	1.025	Guichard Liver 2 Statistics [37]	
	Hepatocellular Carcinoma	212	4.66E-04	3.416	1.037	TCGA	

MBOAT2	Hepatocellular Carcinoma	197	0.957	-1.726	-1.186	Chen Liver Statistics [38]
	Hepatocellular Carcinoma	75	0.822	-0.963	-1.123	Wurmbach Liver Statistics [36]
	Hepatocellular Carcinoma	445	0.991	-2.384	-1.062	Roessler Liver Statistics [39]
	Hepatocellular Carcinoma	115	0.945	-1.625	-1.077	Mas Liver Statistics [40]
	Hepatocellular Carcinoma	185	0.344	0.404	1.002	Guichard Liver Statistics37
	Hepatocellular Carcinoma	52	0.575	-0.191	-1.002	Guichard Liver 2 Statistics [37]
	Hepatocellular Carcinoma	212	0.901	-1.296	-1.015	TCGA
HHATL	Hepatocellular Carcinoma	75	0.869	-1.183	-1.016	Wurmbach Liver Statistics [36]
	Hepatocellular Carcinoma	52	0.998	-3.135	-1.075	Guichard Liver 2 Statistics [37]
	Hepatocellular Carcinoma	212	1	-8.673	-1.274	TCGA
	Hepatocellular Carcinoma	185	1	-9.59	-1.155	Guichard Liver Statistics [37]
GOAT	Hepatocellular Carcinoma	197	0.016	2.177	1.214	Chen Liver Statistics [38]
	Hepatocellular Carcinoma	445	0.01	2.328	1.1	Roessler Liver 2 Statistics [39]
	Hepatocellular Carcinoma	43	0.754	-0.696	-1.083	Roessler Liver Statistics [39]
	Hepatocellular Carcinoma	115	0.998	-3.149	-1.295	Mas Liver Statistics [40]
	Hepatocellular Carcinoma	52	0.845	-1.036	-1.013	Guichard Liver 2 Statistics [37]
	Hepatocellular Carcinoma	75	0.99	-2.588	-1.614	Wurmbach Liver Statistics [36]
	Hepatocellular Carcinoma	212	0.993	-2.515	-1.042	TCGA
LPCAT3	Hepatocellular Carcinoma	185	0.997	-2.811	-1.026	Guichard Liver Statistics [37]
	Hepatocellular Carcinoma	197	1.88E-08	5.753	1.471	Chen Liver Statistics [38]
	Hepatocellular Carcinoma	43	2.30E-05	4.6	1.402	Roessler Liver Statistics [39]
	Hepatocellular Carcinoma	75	0.004	2.874	1.263	Wurmbach Liver Statistics [36]
	Hepatocellular Carcinoma	445	9.59E-14	7.61	1.267	Roessler Liver 2 Statistics [39]
	Hepatocellular Carcinoma	52	0.046	1.735	1.01	Guichard Liver 2 Statistics [37]
	Hepatocellular Carcinoma	212	0.004	2.684	1.032	TCGA
	Hepatocellular Carcinoma	115	0.825	-0.944	-1.062	Mas Liver Statistics [40]
MBOAT7	Hepatocellular Carcinoma	185	0.18	0.919	1.009	Guichard Liver Statistics [37]
	Hepatocellular Carcinoma	52	4.03E-07	6.467	1.107	Guichard Liver 2 Statistics [37]
	Hepatocellular Carcinoma	185	3.57E-19	10.938	1.113	Guichard Liver Statistics [37]
	Hepatocellular Carcinoma	197	0.002	2.067	1.169	Chen Liver Statistics [38]

Wang QJ, et al.

	Hepatocellular Carcinoma	212	4.38E-20	11.51	1.274	TCGA	
	Hepatocellular Carcinoma	75	0.073	1.503	1.236	Wurmbach Liver Statistics [36]	
_	Hepatocellular Carcinoma	445	6.87E-35	13.78	1.781	Roessler Liver 2 Statistics [39]	
	Hepatocellular Carcinoma	43	0.002	3.173	1.461	Roessler Liver Statistics[39]	
SOATT —	Hepatocellular Carcinoma	115	0.68	-0.47	-1.052	Mas Liver Statistics[40]	
	Hepatocellular Carcinoma	445	1.98E-11	6.894	1.395	Roessler Liver 2 Statistics[39]	
_	Hepatocellular Carcinoma	43	0.014	2.325	1.436	Roessler Liver Statistics[39]	
_	Hepatocellular Carcinoma	75	0.015	2.256	1.697	Wurmbach Liver Statistics[36]	
	Hepatocellular Carcinoma	52	0.156	1.022	1.009	Guichard Liver 2 Statistics[37]	
	Hepatocellular Carcinoma	115	0.769	-0.744	-1.039	Mas Liver Statistics[40]	
_	Hepatocellular Carcinoma	212	0.343	0.407	1.004	TCGA	
SOAT2	Hepatocellular Carcinoma	185	0.619	-0.304	-1.002	Guichard Liver Statistics[37]	
	Hepatocellular Carcinoma	75	2.44E-06	10.324	3.256	Wurmbach Liver Statistics[36]	
	Hepatocellular Carcinoma	52	1.09E-06	6083	1.1	Guichard Liver 2 Statistics[37]	
	Hepatocellular Carcinoma	212	3.46E-18	10.619	1.254	TCGA	
	Hepatocellular Carcinoma	197	5.04E-09	6.027	1.524	Chen Liver Statistics[38]	
	Hepatocellular Carcinoma	185	3.38E-15	9.157	1.102	Guichard Liver Statistics[37]	
	Hepatocellular Carcinoma	445	2.45E-20	9.82	1.328	Roessler Liver 2 Statistics[39]	
HHAT	Hepatocellular Carcinoma	115	0.046	1.738	1.091	Mas Liver Statistics[40]	
_	Hepatocellular Carcinoma	43	0.008	2.551	1.203	Roessler Liver Statistics[39]	
	Hepatocellular Carcinoma	52	1.47E-05	4.935	1.068	Guichard Liver 2 Statistics[37]	
	Hepatocellular Carcinoma	212	2.16E-13	8.367	1.249	TCGA	
		185	1.53E-09	6.356	1.103	Guichard Liver Statistics[37]	
	Hepatocellular Carcinoma	43	0.025	2.03	1.298	Roessler Liver Statistics[39]	
DGAT1	Hepatocellular Carcinoma	197	0.113	1.217	1.112	Chen Liver Statistics[38]	
Carcinoma	Hepatocellular Carcinoma	445	0.028	1.913	1.098	Roessler Liver 2 Statistics[39]	
	Hepatocellular Carcinoma	75	0.049	1.727	1.377	Wurmbach Liver Statistics[36]	
_	Hepatocellular Carcinoma	115	0.703	-0.536	-1.059	Mas Liver Statistics[40]	
	Hepatocellular Carcinoma	75	0.235	0.731	1.028	Wurmbach Liver Statistics[36]	
DODON	Hepatocellular Carcinoma	445	0.304	0.515	1.008	Roessler Liver 2 Statistics[39]	
POKCN —	Hepatocellular Carcinoma	115	0.716	-0.578	-1.029	Mas Liver Statistics [40]	
	Hepatocellular Carcinoma	43	0.746	-0.667	-1.041	Roessler Liver Statistics [39]	
Note: TCGA: The	Cancer Genome Atlas						

Figure 1: The mRNA Expression of MBOAT family Genes in hepatocellular carcinoma. A: Scatter diagram (____) HCC liver tissue, (____) Normal liver tissue; B: Box plot (=) HCC liver tissue; (=) Normal liver tissue.

Note: Compared transcriptional level of MBOAT family genes between HCC and normal liver tissues with the GEPIA (http://gepia.cancer-pku. cn/) (*p<0.05).

Figure 3: The FPKM (number Fragments per Kilobase of exon per Million reads) generated by the The Cancer Genome Atlas (TCGA) of MBOATs in Hepatocellular Carcinoma (TCGA RNA samples). The average FPKM of *LPCAT3*, SOAT1, SOAT2, MBOAT7 and DGAT up to 4.7, 4.9, 5.2, 10.1, 20, respectively.

Figure 6: Mutation and Relation Analysis of MBOAT Gene Expression in liver Hepatocellular Carcinoma (cBioPortal). It shows Details of mutation in MBOAT family member. Note: () Missense mutation (unknown significance), () Splice mutation (unknown significance). () Truncating mutations (unknown significance), () Structural variant (unknown significance), () More deletion, () No alterations, () Not profiled.

As shown in Table 2, significantly positive correlations were observed between MBOAT1 and MBOAT2, SOAT1, PORCN; MBOAT2 and HHATL, MBOAT7, SOAT1, PORCN; MBOAT3 and MBOAT7, PORCN; GOAT and MBOAT7, SOAT1; LAPAT3 and SOAT2; MBOAT7 and SOAT2, DGAT1, PORCN; SOAT1 and GOAT; SOAT2 and DGAT1; Significantly negative correlation was observed between MBOAT1 and SOAT1, DGAT1; MBOAT2 and DGAT1; GOAT and MBOAT7, SOAT1; LAPAT3 and HHAT, PORCN; MBOAT7 and HHAT; SOAT1 and DGAT1; SOAT2 and MBOAT1, HHAT, PORCN.

The Linked Omics database was used to study the correlated significant genes with the 11 MBOAT members. Then we use the top 50 correlated genes and MBOATs were subject to pather pathway enrichment analysis in the DAVID database. Top processes were shown in Figure 7. Notably, MBOATs were very relevant to P53 signaling pathway and apoptosis signaling pathway (Figure 8). P53 signaling pathway took part in cell cycle, Apoptosis, DNA repair and damage prevention, and p53 negative feedback by acting on FMBOATs.

Proteomics and genomics analysis of the MBOATs in patients with hepatocellular carcinoma

We analyzed the MBOAT family using proteomic data from the published CELL article. The data of proteome can be viewed in NODE (https://www.biosino.org/node) by pasting the accession (OEP000321) into the text search box or through the URL: (https://www.biosino.org/node/project/detail/OEP000321). A total of five proteins were identified in this proteomic data,

MBOAT1, LPCAT3, MBOAT7, SOAT1, DGAT1, respectively. We found only MBOAT7 and SOAT1 have differences between patients with HCC than normal tissue, significantly (Figure 9). In the hepatocellular carcinoma transcriptome dataset of Nature in 2019, MBOAT1, MBOAT2, LPCAT3, MBOAT7, SOAT1, SOAT2, HHAT, DGAT1 and PORCN were all increased to varying degrees (Figure 9). Gene expression profiles by RNA-seq can be obtained from Gene Expression Omnibus (accession number GSE124535).

SOAT1 knockdown suppressed the proliferation and migration of HCC cell lines

Based on the above results, we further selected the most potential prognostic biomarker for experimental validation. We designed three siRNA based on the SOAT1 gene sequence. Three siRNAs were transfected into Huh7 cell lines, and sicontrol was transfected into control group. The inhibition efficiency of the siSOAT1 was detected by Western Blot. The results showed that siSOAT1-3 had the best inhibition efficiency (Figure 10), and then we only use the most effective siRNA sequence to finish the following proliferation and migration experiments. We use CCK8 assay to examine Huh7 and Hep3B cells proliferation. In this study, the siRNA of SOAT1 expression could significantly inhibit the proliferation of Huh7 and Hep3B (Figure 11). Cell migration assay was used to evaluate the migration ability of HCC. In the cell migration experiment of Huh7 and Hep3B cells, SOAT1 knockdown could reduce the migration ability of HCC cells statistically (p < 0.05) (Figure 12).

 Table 2: Mutation and Relation Analysis of MBOAT Gene Expression in liver Hepatocellular Carcinoma. Table is showing correlation between different MBOATs in hepatocellular carcinoma (cBioPortal).

MBOAT Genes		Correlation between MBOAT Gene Expression in liver Hepatocellular Carcinoma										
MBOATI	1	0.15	0.06	0.01	-0.03	-0.08	0.17	-0.13	-0.09	-0.21	0.15	
MBOAT2	0.15	1	0.12	0.09	-0.1	0.18	0.17	-0.08	-0.08	-0.12	0.25	
HHATL	0.06	0.12	1	-0.02	-0.07	0.01	0.02	-0.03	-0.03	-0.05	0.16	
GOAT	0.01	0.09	-0.02	1	0.06	0.19	0.16	-0.08	-0.07	-0.05	0.08	
LPCAT3	-0.03	-0.1	-0.07	0.06	1	0.09	0.1	0.26	-0.14	0.09	-0.16	
MBOAT7	-0.08	0.18	0.01	0.19	0.09	1	0.04	0.13	-0.18	0.12	0.16	
SOATI	0.17	0.17	0.02	0.16	0.1	0.04	1	0.09	0.06	-0.19	0.09	
SOAT2	-0.13	-0.08	-0.03	-0.08	0.26	0.13	0.09	1	-0.11	0.21	-0.16	
HHAT	-0.09	-0.08	-0.03	-0.07	-0.14	-0.18	0.06	-0.11	1	-0.17	-0.03	
DGAT1	-0.21	-0.12	-0.05	-0.05	0.09	0.12	-0.19	0.21	-0.17	1	-0.1	
PORCN	0.15	0.25	0.16	0.08	-0.16	0.16	0.09	-0.16	-0.03	-0.1	1	
	MBOAT1	MBOAT2	HHATL	GOAT	LPCAT3	MBOAT7	SOATI	SOAT2	HHAT	DGAT1	PORCN	

Figure 7: Mutation and Relation Analysis of MBOAT Gene Expression in liver Hepatocellular Carcinoma (cBioPortal). It is showing the functions of 11 MBOAT members and the top 50 correlated genes were predicted by the analysis in the DAVID database. Note: (\longrightarrow) FDR \leq 0.05, (\longrightarrow) FDR>0.05.

Figure 8: Mutation and Relation Analysis of MBOAT Gene Expression in liver Hepatocellular Carcinoma (cBioPortal). P53 signaling pathway took part in cell cycle, apoptosis, DNA repair and damage prevention and p53 negative feedback by 11 MBOAT members in hepatocellular carcinoma (cBioPortal) are shown.

Figure 10: Expression of MBOAT family in proteomic data and effect of SOAT1 on proliferation and migration of hepatocellular carcinoma cells. The effect of knockdown SOAT1 with WB in Huh7 and Hep3B cell lines treated with/without SOAT1 siRNA for 72 h.

Figure 11: Expression of MBOAT family in proteomic data and effect of SOAT1 on proliferation and migration of hepatocellular carcinoma cells. Cell viability assay of Huh7 and Hep3B cells treated with/without SOAT1 siRNA for 72 h. Note:*p<0.05, **p<0.01, ***p<0.001. (•) Control, (•) siSOAT1.

Figure 12: Expression of MBOAT family in proteomic data and effect of SOAT1 on proliferation and migration of hepatocellular carcinoma cells. Cell migration assay of Huh7 and Hep3B cells treated with/without SOAT1 siRNA for 72 h.

SOAT1 inhibition results in mitochondrial damage, ROS elevation, and apoptosis

Interestingly, we found that the number of HCC cell death significantly increased after knockdown of SOAT1 by siRNA in Hep3B cell line (Figures 13 and 14). To identify the leading cause of HCC cell death upon SOAT1 inhibition, examined whether it led to the production of Reactive Oxygen Species (ROS) in HCC cells. We then Using fluorescence microscope imaging and microplate reader showed that ROS (green) and OD values (450 nm) were markedly elevated upon genetic inhibition of SOAT1 (Figure 13). According to previous studies, excessive production of ROS can cause mitochondrial damage. We then examined HCC cellular morphology by Transmission Electron Microscopy (TEM). Micrographs showed that the structure of mitochondria was severely disrupted upon genetic transient transfection (siRNA, 24 h) inhibition of SOAT1. Mitochondria became round and fragmented and lost cristae in comparison with the lengthy tubular shape of mitochondria in si-control cells (Figure 15). MBOATs were very relevant to apoptosis signaling using the top 50 correlated significant genes with the 11 MBOATs genes subject to pather Pathway enrichment analysis in the DAVID database as above. In order to explore whether the mitochondrial damage is there or not and ROS production caused by SOAT1, inhibition can cause cell apoptosis. The experimental verification was performed by Tunnel fluorescence staining. Notably, the number of apoptotic cells increased significantly compare to sicontrol cells after genetic inhibition of SOAT1 (Figure 16).

We next examined whether inhibition of *DGAT1* is effective in inhibiting HCC growth using M-NSG xenograft models. We implanted tumor cells in mice flanks and started treatment with the siControl and *si-SOAT1-3* for 21 day. The data showed that the *si-SOAT1* significantly suppressed tumor growth in both xenograft models (Figure 17), as further evidenced by the dramatic reduction in tumor weight. Consistent with the *in vitro* analysis (Figures 16), we also examined the 4 tumor of xenograft models. Moreover, western blot also showed that *SOAT1* inhibition strongly induced apoptosis in HCC cells, as demonstrated by the dramatic upregulation in the cleaved caspase 3 and cleaved caspase 9 proteins as compared with control (Figure 18). Together, these data demonstrate that genetic inhibition of *SOAT1* effectively suppresses tumor growth and induces apoptosis in both *in vitro* and *in vivo*.

Figure 13: Inhibition of SOAT1 Causes Mitochondrial Damage, ROS Production, and HCC Cell Apoptosis. A and B represent fluorescence images and micro plate reader of ROS in HCC cells treated with/without SOAT1 siRNA as in (A) and (B) in the presence or absence of NAC (1 mM). Scale bar, 10 mm. Dead cell percentage was counted after treatment for 72 hours (mean ± SD, n=3) (right bottom panels). **Note:** p<0.05.

Figure 17: Inhibition of SOAT1 Causes Mitochondrial Damage, ROS Production, and HCC Cell Apoptosis. The effects of siSOAT1 in Hep3Bderived subcutaneous models (mean ± SD, n=7).

Figure 18: Inhibition of SOAT1 Causes Mitochondrial Damage, ROS Production, and HCC Cell apoptosis. The effects of siSOAT1 in Hep3Bderived subcutaneous models (mean ± SD, n=7).

DISCUSSION

Despite the large number of studies on HCC over past decades, little progress had been made because the lack of comprehensive and depth understanding. 11 of MBOAT proteins (MBOAT1, MBOAT2, HHATL, GOAT, LPCAT3, MBOAT7, SOAT1, SOAT2, HHAT, DGAT1, PORCN) unusual changes had been reported in many tumors, including Chronic Lymphocytic Leukemia (CLL), Pancreatic Ductal Adenocarcinoma (PDAC), prostate cancer, clear cell Renal Carcinoma (ccRCC), Glioblastoma (GBM), breast cancer and Hepatocellular Carcinoma (HCC) [37-40]. The function of some MBOATs in the prognostic and predictive of cancers has been partially reported, further bio-informatics analysis still need to be confirmed. We use different public databases to comprehensively analyze the mRNA and protein expression, assessing prognostic worth of 11 of MBOAT genes in HCC with the purpose to find the most effective potential biomarkers.

MBOAT1 genes overexpression were significantly associated with a reduced risk of disease progression with HR=2.1, 95% CI: 1.1-3.7, P=.018, indicating that MBOAT1 can surrogate molecular markers for IGHV mutational status in chronic lymphocytic leukemia for predicting time to first treatment [17]. MBOAT1 was higher in cancer than in normal tissues in TCGA. By the Kaplan-Meier Plotter, we found the prognostic value of MBOAT1 in patients with HCC despite it was not correlated with the clinical features. A high MBOAT1 expression was highly associated with poor OS, PFS, RFS, and DSS. The expression and role of MBOAT2 in HCC was not well known until now. Zhouxiaoxiao et al. [41] reported that Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer. Moreover, Tang Xiaolong et al. [42] reported that MBOAT2 is highly expressed in both Colorectal Cancer (CRC) tissues and serum samples, and has a relationship with tumor stage. We found the expression of MBOAT2 in cancer tissues was higher than in normal tissues. What's more, MBOAT2 expression was correlated with tumor

stage in patients with Hepatocellular Carcinoma. However, MBOAT2 expression was not significantly correlated with poor OS, PFS, RFS, and DSS in all of the patients with hepatocellular carcinoma. HHATL is an O-acyl transferase which is required for several cellular processes, relating to apoptosis development, such as rafts integrity and stability, lipid metabolism [43]. We proved that the expression of HHATL has no difference and relationship with tumor stage between hepatocellular carcinoma tissues and normal tissues. What's more, the low expression has no correlated with poor OS, PFS, RFS, and DSS in all of the patients with HCC, which seemed that HHATL was not an oncogene. MBOAT4, a member of the MBOATs super-family, is also named as as Ghrelin O-acyltransferase (GOAT). Gualillo Oreste et al. found drugs that inhibit GOAT might be able to prevent dietinduced obesity and might be an effective therapy for type-2 diabetes [44]. The expression of MBOAT4 has relationship with tumor stage but has no difference in HCC tissues than in normal. LPCAT3 regulated intestinal stem cells and progenitor cells by stimulating cholesterol biosynthesis; increasing cholesterol in the diet or through genetic manipulation promoted tumorigenesis [45]. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease and cancer [46]. Moreover, Rong Xin et al. [47] discovered that promotion of LPCAT3 activity ameliorates Endoplasmic Reticulum (ER) stress induced by saturated free fatty acids in vitro or by hepatic lipid accumulation in vivo. Conversely, LPCAT3 knockdown in liver exacerbates ER stress and inflammation.

We demonstrated that transcriptional levels of LPCAT3 in patients with Hepatocellular Carcinoma was higher expressed in Chen Liver (fold change=1.214) [48]. The expression of LPCAT3 was obviously related to poor PFS and RFS in all of the patients with HCC. SOAT2 is also known as ACAT2 which is reported expressed in several tumors. Pramfalk C et al. [49-52] showed that HNF4alpha, directly or indirectly (via HNF1alpha), can bind to the ACAT2 promoterreported via ChIP assays and proteinto-protein interaction studies. Thus lower levels of esterified cholesterol in VLDL-particles and LDL-particles in patients with MODY1 may at least in part-be attributable to lower ACAT2 activity in these patients. Other data indicate that leptin may enhance the proliferation, migration and invasion of breast cancer cells through the PI3K/AKT/SREBP2 signaling pathway via ACAT2 up-regulation. Therefore, the leptin/ACAT2 axis may represent an attractive therapeutic target for breast cancer [53]. The mRNA level of SOAT2 was not related with tumor stage but has difference between HCC and normal tissues. HHAT was significantly up-regulation in patients with HCC, and has high OS, RFS, PFS and DSS in our report. Asciolla James J et al. [54] reported that HHAT serves a dual function as a palmitoyl acyltransferase and a conduit to supply palmitoyl-CoA to the luminal side of the ER. What's more, Regan Joseph L et al using small-molecule inhibitors and RNAi against HHAT, demonstrate that non-canonical Hedgehog signaling is a positive regulator of WNT signaling and required for colon CSC survival [55]. This is consistent with our analysis.

PORCN inhibitors that block WNT secretion have proven effective in WNT-addicted preclinical cancer models and are in clinical trials. We found the mRNA expression of PORCN in cancer tissues was higher than in normal tissues. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of WNT ligands, a necessary step in the processing of WNT ligand secretion [56]. PORCN inhibitors that block WNT secretion have proven effective in WNT-addicted preclinical cancer models and are in clinical trials [57]. We didn't found significantly mRNA change of PORCN in HCC tissues compares with normal tissues. No relationship can be found between the expressions of PORCN with tumor stage in patients with HCC. Corbet Cyril showed that upon TGF-12 stimulation, PKC-zeta-mediated translocation of CD36 promotes the uptake of fatty acids that are either oxidized to generate ATP to fulfill immediate cellular needs or stored as triglycerides in LD through PORCN56. The PFS and RFS of PORCN have profound meaning in our analysis. In a human biopsied NAFLD cohort, MBOAT7 is reported associated with fibrosis independent of the presence of histological inflammation [58]. We also found that the transcriptional levels of MBOAT7 in cancer tissues was higher in three datasets, but has no correlation with tumor stage in cancer patients. A higher MBOAT7 expression has correlationship with OS, DSS, PFS, and RFS in all of the patients with significantly difference, respectively. In our analysis, no significant difference was found in the mRNA and protein data of DGAT1, suggesting that DGAT1 is not an ideal diagnostic and prognostic marker in HCC.

Targeting gene family has been a steady focus in therapeutic development for cancer. However, as the number of genes in each gene family varies, therapeutically targeting this process in individuals with cancer is limited. Thus, identifying the most effective target in gene family uniquely operating in HCC and other malignancies, while inactive other genes is necessary to develop a specific antitumor therapy. In fact, our findings showing that targeting MBOATs family number of SOAT1 open up a new opportunity to target this deadly cancer. After comprehensive

analysis of the MBOAT family using proteomic data from the published CELL article, we found only MBOAT7 by saturated free fatty acids *in vitro* or by hepatic lipid accumulation *in vivo*. Conversely, LPCAT3 knockdown in liver exacerbates ER stress and inflammation.

CONCLUSION

SOAT1 has difference between patients with hepatocellular carcinoma than normal tissue, significantly. We found the transcriptional level of SOAT1 increased in all six of the eight databases. A high SOAT1 expression was obviously related with poor OS and DSS in all of the HCC patients, which seemed consistent with the role of SOAT1 as a tumor promoter. In the previous analysis of mRNA data, MBOAT7 has no correlation with tumor stage in HCC patients. We finally get to the conclusion that the possibility of SOAT1 as an oncogenic factor. We induced SOAT1 silencing through transfection siRNAs in two HCC cell lines (Huh7 and Hep3B) to evaluate the role of SOAT1 in vitro. The results confirmed that knocking down SOAT1 decrease proliferation and migration in HCC cells, which further confirm SOAT1 as a crucial target in HCC. This concept is supported by studies that inhibiting DGAT1 alone did not subsequently. As has been studied in previous, inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-Mediated Lipogenesis [49]. Genetic targeting of SOAT1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 Loss of Heterozygosity (LOH). Some new cholesterol metabolic molecules such as SOAT1, SQLE, and NPC1 have recently emerged as promising drug targets for cancer treatment. Over the past two decades, the prognosis for HCC has remained very dismal despite aggressive treatment. One of the main reasons for this limited progress is a lack of full understanding of HCC biology. This mechanism has the advantage to quickly boost malignant tumor growth. Interestingly, based on our results, targeting SOAT1 elevated ROS production will induce mitochondrial damage and apoptosis in tumor cells. This is the first time to find the most effective target in the gene family and verify it in HCC. Herein, our work provides a strong basis to translate SOAT1 inhibition to clinical testing in individuals with HCC and other cancers expressing high levels of SOAT1.

AUTHORS CONTRIBUTIONS

Conceptualization, Minghan Wang.; Investigation, Minghan Wang., Junyuan Han.,; Writing Original Draft, Minghan Wang;Writing – Review & Editing, Minghan Wang; Supervision, Minghan Wang, Quanjun Wang; Funding Acquisition, Quanjun Wang., Ying Jiang.

ACKNOWLEDGEMENTS

My special thanks first go to Dr.Ying Jiang and Quanjun Wang who had spent much of his precious time proof reading the drafts of my thesis. Without this valuable instruction and advice, this paper would not have been able to be finished smoothly. I also want to express my sincere gratitude to all the other authors. Finally, I would like to give my thanks to my family, especially my son and little daughter. Without their support, this paper could not have been finished.

COMPETING INTERESTS

The authors declare no competing interests

FUNDING

This study was funded by the National Science and Technology Major Special Project of "Major New Drug Innovation and Development", No.2018ZX09711003-007; Supported by: National Science and Technology Major Special Program of "Major New Drug Development", No.2018ZX09721003-001-005; National Science and Technology Major Special Project of "Major New Drug Development", No.2018ZX09201017-003.

REFERENCES

- 1. Hofmann K. A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci. 2000;25(3):111-2.
- Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA: diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res. 2012;51(4):350-77.
- Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 1999;40(5):781-96.
- Manukhin BN, Nesterova LA. Allosteric Modulation by Adrenotropic Agents of the [H-3] Quinuclidinyl Benzylate Binding to M-Cholinoreceptors in Rat Cerebral Cortex. Biol. Membrany. 2009; 26(2):104-10.
- 5. Resh MD. Fatty acylation of proteins: The long and the short of it. Prog Lipid Res. 2016;63:120-31.
- Masumoto N, Lanyon-Hogg T, Rodgers UR, Konitsiotis AD, Magee AI, Tate EW. Membrane bound O-acyltransferases and their inhibitors. Biochem Soc Trans. 2015;43(2).
- 7. Tuladhar R, Lum L. Fatty acyl donor selectivity in membrane bound O-acyltransferases and communal cell fate decision-making. Biochem Soc Trans. 2015;43(2):235-9.
- 8. Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW. Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends Biochem Sci. 2017;42(7):566-81.
- 9. Resh MD. Palmitoylation of proteins in cancer. EMBO Rep. 2017;45(2):409-16.
- Madan B, Virshup DM. Targeting Wnts at the Source–New Mechanisms, New Biomarkers, New DrugsTargeting Wnts at the Source. Mol Cancer Ther. 2015;14(5):1087-94.
- Rios-Esteves J, Haugen B, Resh MD. Identification of key residues and regions important for porcupine-mediated Wnt acylation. J Biol Chem. 2014;289(24):17009-19.
- 12. McFie PJ, Stone SL, Banman SL, Stone SJ. Topological orientation of acyl-CoA: diacylglycerol acyltransferase-1 (*DGAT1*) and identification of a putative active site histidine and the role of the n terminus in dimer/ tetramer formation. J Biol Chem. 2010;285(48):37377-87.
- 13. Das A, Davis MA, Rudel LL. Identification of putative active site residues of ACAT enzymes. J Lipid Res. 2008;49(8):1770-81.
- Lin S, Lu X, Chang CC, Chang TY. Human acyl-coenzyme A: cholesterol acyltransferase expressed in chinese hamster ovary cells: membrane topology and active site location. Mol Biol Cell. 2003;14(6):2447-60.

- 15. Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132(3):387-96.
- Buglino JA, Resh MD. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog. PloS one. 2010;5(6):e11195.
- Morabito F, Cutrona G, Mosca L, D'Anca M, Matis S, Gentile M, et al. Surrogate molecular markers for IGHV mutational status in chronic lymphocytic leukemia for predicting time to first treatment. Leuk Res. 2015;39(8):840-5.
- 18. Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia-the authors reported a combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008;55(88):2016
- Hormaechea-Agulla D, Gahete MD, Jiménez-Vacas JM, Gómez-Gómez E, Ibáñez-Costa A, Rivero-Cortés E, et al. The oncogenic role of the In1ghrelin splicing variant in prostate cancer aggressiveness. Mol Cancer. 2017;16(1):1-6.
- 20. Neumann CK, Silver DJ, Venkateshwari V, Zhang R, Traughber CA, Przybycin C, et al. MBOAT7-driven phosphatidylinositol remodeling promotes the progression of clear cell renal carcinoma. Mol Metab. 2020;34:136-45.
- 21. Cheng X, Geng F, Pan M, Wu X, Zhong Y, Wang C, et al. Targeting *DGAT1* ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell Metab. 2020;32(2):229-42.
- 22. Wei L, Wang X, Lv L, Zheng Y, Zhang N, Yang M. The emerging role of noncoding RNAs in colorectal cancer chemoresistance. Cell Oncol (Dordr). 2019;42(6):757-68.
- 23.Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Chinese Human Proteome Project (CNHPP) Consortium. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257-61.
- 24. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589-604.
- 25.Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179(2):561-77.
- 26. Boyault S, Rickman DS, de Reyniès AD, Balabaud C, Rebouissou S, Jeannot E, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42-52.
- 27. Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327.41.
- 28. Calderaro J, Couchy G, Imbeaud S, Amaddeo G, Letouzé E, Blanc JF, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol. 2017;67(4):727-38.
- 29. European Association For The Study Of The Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182-236.

- 30.Tulha J, Lucas C. Saccharomyces cerevisiae mitochondrial Por1/ yVDAC1 (voltage-dependent anion channel 1) interacts physically with the MBOAT O-acyltransferase Gup1/HHATL in the control of cell wall integrity and programmed cell death. FEMS Yeast Res. 2018;18(8):097.
- Thomas C, Jalil A, Magnani C, Ishibashi M, Queré R, Bourgeois T, et al. LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis. Atherosclerosis. 2018;275:409-18.
- 32.Oni TE, Biffi G, Baker LA, Hao Y, Tonelli C, Somerville TD, et al. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J Exp Med. 2020;217(9).
- 33.Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer cell. 2014;25(5):638-51.
- 34. Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 2016;35(17):2197-207.
- 35.Sealfon SC, Chu TT. RNA and DNA microarrays. Methods Mol Biol. 2011; 3-34.
- Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45(4):938-47.
- 37. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Gene. 2012;44(6):694-8.
- 38. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al. Gene expression patterns in human liver cancers. Mol Biol Cell. 2002 ;13(6):1929-39.
- 39. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, et al. A unique metastasis gene signature enables prediction of tumor relapse in earlystage hepatocellular carcinoma patients. Cancer Res. 2010;70(24):10202-12.
- 40. Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, et al. Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virusinduced hepatocellular carcinoma. Mol Med. 2009;15(3):85-94.
- 41. Zhou X, Liu K, Cui J, Xiong J, Wu H, Peng T, et al. Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer. J Exp Clin Cancer Res. 2021;40(1):1-5.
- 42. Tang X, Sun G, He Q, Wang C, Shi J, Gao L, et al. Circular noncoding RNA circMBOAT2 is a novel tumor marker and regulates proliferation/ migration by sponging miR-519d-3p in colorectal cancer. Cell Death Dis. 2020;11(8):1-5.
- 43.Tulha J, Faria-Oliveira F, Lucas C, Ferreira C. Programmed cell death in Saccharomyces cerevisiae is hampered by the deletion of GUP1 gene. BMC Microbiol. 2012;12(1):1-0.

- 44.Gualillo O, Lago F, Dieguez C. Introducing GOAT: A target for obesity and anti-diabetic drugs?.Trends Pharmacol Sci. 2008 ;29(8):398-401.
- 45. Mukherjee P, Chattopadhyay A, Fogelman AM. The role of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer. Curr Opin Lipidol. 2019;30(5):383.
- 46. Wang B, Tontonoz P. Phospholipid remodeling in physiology and disease. Annu Rev Physiol. 2019;81:165.
- 47. Rong X, Wang B, Palladino EN, de Aguiar Vallim TQ, Ford DA, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127(10):3640-51.
- 48. Thangapandi VR, Knittelfelder O, Brosch M, Patsenker E, Vvedenskaya O, Buch S, et al. Loss of hepatic *Mboat7* leads to liver fibrosis. Gut. 2021;70(5):940-50.
- 49.Geng F, Cheng X, Wu X, Yoo JY, Cheng C, Guo JY, et al. Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1– Mediated LipogenesisTargeting SOAT1 to Treat Glioblastoma. Clin. Cancer Res. 2016;22(21):5337-48.
- 50.Oni TE, Biffi G, Baker LA, Hao Y, Tonelli C, Somerville TD, et al. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J Exp Med. 2020;217(9).
- Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: new functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer2020;1874(1):188394.
- 52. Pramfalk C, Karlsson E, Groop L, Rudel LL, Angelin B, Eriksson M, et al. Control of ACAT2 liver expression by HNF4α: lesson from MODY1 patients. Arterioscler Thromb Vasc Biol. 2009;29(8):1235-41.
- Wei L, Wang X, Lv L, Zheng Y, Zhang N, Yang M. The emerging role of noncoding RNAs in colorectal cancer chemoresistance. Cell Oncol (Dordr). 2019;42(6):757-68.
- 54.Asciolla JJ, Resh MD. Hedgehog acyltransferase promotes uptake of palmitoyl-CoA across the endoplasmic reticulum membrane. Cell Rep. 2019;29(13):4608-19.
- 55.Regan JL, Schumacher D, Staudte S, Steffen A, Haybaeck J, Keilholz U, et al. Non-canonical hedgehog signaling is a positive regulator of the WNT pathway and is required for the survival of colon cancer stem cells. Cell reports. 2017;21(10):2813-28.
- 56. Corbet C, Bastien E, Santiago de Jesus JP, Dierge E, Martherus R, Vander Linden C, et al. TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat Comm. 2020 ;11(1):1-5.
- 57. Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, et al. Targeting Wntdriven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110(50):20224-9.
- 58. Thorsell AG, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L, et al. Structural basis for potency and promiscuity in poly (ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem. 2017; 60(4):1262-71.