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Opinion
Despite advances in our understanding of tumour biology and 

rapid strides in cancer therapies, malignant tumours remain a leading 
cause of morbidity and mortality [1-3]. Among these tumours, 
pancreatic ductal adenocarcinoma (PDAC) remains a leading cause 
of mortality worldwide, with the lowest five-year survival rate [4-6]. 
Therefore, development of novel therapeutic strategies remains the 
urgent need of the hour. Poorly vascularized tumours like PDAC have 
remained largely untreatable despite the substantial innovations in 
anti-angiogenesis therapies [7,8]. At the morphological level, PDAC is 
characterized by an intense fibrotic reaction called tumour desmoplasia, 
primarily composed of the cancer-associated fibroblasts (CAFs) along 
with other stromal cells [9-12]. Recent findings have highlighted the 
crucial role of CAFs in numerous oncogenic events through alteration 
of the tumour microenvironment by releasing oncogenic as well as 
angiogenic factors [13-15]. Highly fibrotic PDAC tumours are often 
resistant to chemotherapy and radiation therapy due to high interstitial 
pressure and tumour microenvironment. This raised the question, 
“Could evolution of anti-fibrosis therapies treat PDAC?”

The origin of fibroblasts in pathological conditions is complex 
and multifactorial. Traditionally, adult fibroblasts are derived directly 
from embryonic mesenchymal cells and increase in number due to 
proliferation of resident fibroblasts [13,16]. In the setting of diseases like 
cancer, epithelial-to-mesenchymal transition (EMT) has been studied 
extensively as an important mechanism of invasion and metastasis. 
Recent studies have suggested that during fibrosis, endothelial cells 
(ECs) demonstrate an unusual cellular plasticity that contributes 
towards fibroblast accumulation through endothelial-to-mesenchymal 
transition (EndMT) in addition to the proliferation of resident fibroblast 
[13-17]. During EndMT, resident ECs delaminate from an organized 
cell layer and invade the underlying tissue. This resultant mesenchymal 
phenotype is characterized by reduced expression of endothelial 
markers and increased expression of mesenchymal markers, as well 
as the loss of cell–cell junctions and the acquisition of invasive and 
migratory phenotypes [18]. EndMT-derived cells function as fibroblasts 
in damaged tissue and have an important role in tissue remodeling and 
the development of fibrosis. A plethora of studies have investigated the 
role of EndMT in physiological processes like development of primitive 
heart [19] and process of wound healing [20].

However, maladaptive EndMT has been implicated in a variety of 
fibrotic pathologies including cancer [21,22]. Zeisberg et al. validated 
through lineage tracing studies that up to 40% of CAFs were derived 
via EndMT [22]. Furthermore, other reports have suggested that 
endothelium could also be the source of vascular support cells, such 
as pericytes and/or smooth muscle cells, thereby indicating that 
EndMT may be an essential mechanism in recruiting mural cells 
during angiogenesis [23]. Additionally, these mural cells are an integral 
component of mature blood vessels, and hence EndMT may also 
contribute in stabilizing the neovasculature for maturation.
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Mechanistically, several studies have demonstrated the role of 
TGFβ signaling in regulating EndMT [24]. Also, TGFβ signaling 
is aberrantly active in PDAC; therefore suggesting that fibrosis in 
PDAC may be derived from TGFβ-mediated EndMT. In vitro studies 
have also implicated Notch pathways in modulating EndMT [25]. 
However, mechanistic work focusing on in vivo EndMT in the context 
of pathological conditions like PDAC remains unclear and warrants 
additional enquiry. Other signaling pathways like VEGF, BMP, Wnt/β-
catenin have been extensively investigated in physiological EndMT [26] 
but their involvement in EndMT is yet to be determined conclusively. 
Additionally, the roles of downstream transcription effectors like Snail, 
Slug and Twist in EndMT within PDAC remain undecided. Paracrine 
action of endothelial cells through Snail and CTGF on fibroblast 
proliferation has been reported [27]. Recently, through a systematic line 
of inquiry, we have shown for the first time the role of TGFβ-mediated 
EndMT in PDAC using in vitro and in vivo approaches (Unpublished 
data). We are further investigating the therapeutic potential of limiting 
EndMT in a clinically relevant rodent model of human PDAC.

Taken altogether, the fibroblasts play a vital role in several cancer 
initiating and progression events and form an integral component of 
tumour stroma. Although, the fibroblasts could be recruited through 
multiple sources, EndMT is emerging as a major source in tumour 
fibrosis. Given the crucial role of EndMT, we believe that targeting 
EndMT in PDAC could inhibit tumour growth and metastasis, 
possibly through compromised angiogenesis and CAF recruitment. 
Future treatment strategies could target the TGFβ signaling due to its 
diverse role not only in EndMT, but also in other oncogenic events. 
Nevertheless, further studies are necessary to identify and validate the 
detailed molecular mechanisms of EndMT as well as their possible 
paracrine role in PDAC, and investigate their therapeutic potential. 
Finally, to maximize the effect of targeting EndMT, it is imperative to 
identify tumours harboring aberrant EndMT and activated fibroblast 
populations. Combination of chemotherapeutics, small molecule 
inhibitors of aforementioned pathways and radiation therapy may lead 
to a more synergistic therapeutic benefit and needs to be considered.
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