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Abstract

Soft tissue sarcomas are an uncommon and diverse group of more than 50 mesenchymal malignancies with very
specific underlying molecular events driving oncogenesis. The mysterious pathogenesis is slowly revealing the vary
secrets of their inner workings. There is a paradigm shift in sarcoma management wherein therapeutic decision-
making is guided by key genetic events of oncogenic potential. Present perspective, will focus on the rationale for
targeted delivery of therapy in sarcoma, with emphasis on the relevance of specific molecular factors and pathways.
It will also focus upon the story behind some of the early successes and challenges and disappointments in taming
these targets. Finally it will discuss possible opportunities represented by poorly understood, but potentially
promising new therapeutic targets and investigational biological agents. This communication will provide a demarche
of the current state of the art for medical management of sarcomas and a sense of where it may be headed in the
coming years.
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Introduction
Sarcomas represent a family of rare cancers of bone and soft tissue

accounting for less than 1% of cancer in adults and approximately 15%
of pediatric cancer [1]. They are biologically heterogeneous, with more
than 50 histologic subtypes identified in soft tissue and more than 20
in bone, in keeping with the multiple types of connective tissue that
constitute the human body [2]. Although outcomes vary greatly by
sarcoma subtype, current therapies are limited and urgent need for
more effective therapies is reflected by persistently poor five year
sarcoma survivals of approximately 50% [3]. Being rare, sarcomas

may represent ideal targets for the experimental drug
discoveries. Further, unlike most of the common cancers which are
driven by a wider array of molecular events [4], these rare tumors may
be driven by a single genetic event, and rely on this aberration to
survive (oncogenic addiction). This theory has been borne out in some
sarcomas, most notably gastrointestinal stromal tumor (GIST) and
dermato fibro sarcoma protuberans (DFSP), in which targeted agents
have had a high degree of treatment success. Other sarcomas governed
by complex molecular events are yet to be explored for determining
specific targets.

Sarcoma molecular pathogenesis
Sarcomas are broadly classified by underlying genomic events as 1)

those with specific translocations or gene amplification, 2) those with
defining oncogenic mutations and 3) those with complex genomic
rearrangements. Each class contains whole spectrum of tumors with a
wide array of clinical, histological and molecular characteristics (Table
1).

Translocation-associated sarcomas
Currently, specific, recurrent translocations have been identified in

19 soft tissue sarcomas. Translocation associated sarcomas account for
20-30% of all sarcomas [5], and this number are growing larger with
new discoveries of recurrent translocations in additional tumor types.
These recurrent translocations result in chimeric fusion genes which
function as transcription factors, as is epitomized by the EWSR1-FLI1
fusion gene in Ewing sarcoma. Less commonly, it results in over
expression or constitutive activation of a growth factor receptor
tyrosine kinase (RTK) or other chimeric growth factor signalling
protein. This event is seen in DFSP, in which wild types PDGFB is
overexpressed under the COL1A1 promoter, and inflammatory
myofibroblastictumor (IMT) in which ALK fusion protein promote
dimerization of the ALK tyrosine kinase thereby rendering it
constitutively active [6,7].

Amplification-associated sarcomas
Recurrent amplifications have identified only in a few soft tissue

sarcomas, most notably well-differentiated or dedifferentiated
liposarcomas, in which amplification of chromosome 12q13-15,
including HDM2 (MDM2) and CDK4 is characteristic [8]. HDM2
functions as an inhibitor of p53. Accordingly, amplification and
subsequent overexpression of this chromosomal locus results in
inhibition of p53-dependent cell-cycle arrest and apoptosis. Cdk4 is a
cell cycle regulator, and over expression of this factor promotes
proliferation, while other gene loci within this interval may also have
pro-oncogenic effects.

MYC amplification has been identified in secondary (radiation-
induced) angiosarcoma [9], and may be seen sporadically in other
sarcomas [10-12]. MYC is a proto-oncogenic transcription factor,
which can act as either a transactivator or repressor, and has been
reported thus far in many cancers [13,14].
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Selected approved targeted agents in sarcoma

 Sr. no. Agent Target Tumor Status

 Tyrosine Kinase

Inhibitors

  

    

1

 

Imatinib mesylate

 

Kit, Abl,

PDGFR

GIST, DFSP

 

FDA Approved

 

2

 

 

 

 

 

Sunitinib

 

 

 

 

 

Multiple

tyrosine

kinases:

PDGFR, Kit,

RET, CSF-1R,

Flt3, VEGFR

GIST

 

 

 

 

 

FDA Approved

3

 

 

 

 

 

 

 

 

 

Regorafenib

 

 

 

 

 

 

 

 

 

Multiple

tyrosine

kinases: RET,

VEGFR, KIT,

PDGFR-alpha,

FGFR, TIE2,

DDR2, Trk2A,

Eph2A, RAF-1,

BRAF, SAPK2,

PTK5

GIST

 

 

 

 

 

 

 

 

 

FDA Approved

 

4

 

Pazopinib

 
VEGFR, PDGFR, Kit

STS (except

liopsarcoma and GIST)

FDA Approved

 

5 Sirolimus mTOR inhibitor Lymphangomyomatosis FDA Approved

Table 1: Sarcoma Targeted Agents (Established).

Pediatric sarcomas
The most common histologic varients of sarcoma seen in paeditric

age group include Osteogenic sarcoma, Ewing sarcoma,
Rhabdomyosarcoma (alveolar and embryonal subtypes, primarily),
and less commonly nonrhabdomyosarcoma group of tumor (synovial
sarcoma and desmoplastic small round cell tumor). There is less than
handful of agents in armamentarium to treat each of these tumors
(Table 1) (Figure 1).

Rhabdomyosarcoma
Rhabdomyosarcoma most commonly affect children under 5 years

of age; however they are also seen in adolescents and young adults. The
tissue of origin is skeletal muscle and there are 2 major histologic

subtypes, alveolar (ARMS) and embryonal (ERMS). ARMS are
characterized by translocations between the DNA-binding domain of
either PAX3 or PAX7 and the transactivation domain of FOXO1.
ARMS are more comon in older children adolescents, and young
adults and their prognosis is poorer than ERMS. Similar to Ewing
sarcoma, preclinical and clinical data suggested important role of IGF
signaling in rhabdomyosarcoma. Both alveolar and embryonal
rhabdomyosarcoma have high expression of IGF-II and IGF1R
through diverse mechanisms. Loss of imprinting at IGF2 locus is
present in ERMS. The fusion transcription factor PAX3-FOXO1 targets
the IGF1R promoter [15]. According to a phase 2 trial, the
combination of cixutumumab and temsirolimus had clinical activity in
patients with sarcoma however; IGF-1R expression by
immunohistochemistry was not predictive of clinical outcome [16].
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Figure 1: Sarcoma targeted agents (Established).
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Inflammatory myofibroblastic tumor
Inflammatory myofibroblastic tumor (IMT) is a rare, locally

aggressive tumor. It is a neoplasm composed of myofibroblastic and
fibroblastic spindle cell proliferation associated with inflammatory
infiltrate of plasma cells, lymphocytes and/or eosinophils. It is
biologically heterogeneous but was found to harbor translocations
involving ALK in 50% of patients, particularly younger patients
[17,18].

ALK, encoded by its cognate gene located on chromosome 2 (2q23),
is a receptor tyrosine kinase that belongs to the insulin receptor family
[19,20]. Normally its expression is limited to the central and peripheral
nervous system where it promotes cell proliferation, survival and
differentiation in response to extracellular stimuli by activating the
PI3/AKT, MAPK/ERK and STAT3 pathways [20]. ALK gene
abnormalities are also identified in other tumors such as
neuroblastoma, lung carcinoma, rhabdomyosarcoma, renal cell
carcinoma and inflammatory breast cancer [20-22]. Crizotinib is a
small-molecule inhibitor of anaplastic lymphoma kinase (ALK). IMT
being rare tumor activity of crizotinib is difficult to document in
randomized trials; however, phase I studies in adults [23], and children
[24,25] shown activity in this tumor type.

Adult onset sarcomas
Sarcomas are comparatively more uncommon in adults than other

cancers and are more heterogeneous. Sarcoma subtypes can be
differentiated based on anatomic primary site and patient age. GIST,
UPS, leiomyosarcoma, and the 3 forms of liposarcoma are the most
common subtypes in adults. However, childhood predominating
sarcomas may present in adults with atypical presentations. Ewing
sarcoma is a common bone tumor in children, but is predominantly a
primary soft tissue sarcoma in adults; rhabdomyosarcoma is mainly
the pleomorphic subtype in adults than in children in who
membryonal and alveolar are commonest subtypes.

Despite their heterogeneity, over the last several years a variety of
novel agents have been found to be active in specific sarcoma subtypes.
These are outlined in Table 2; and are described comprehensively later.
Adult sarcomas are likewise challenging as pediatric sarcomas
however, for some specific types there are sufficient numbers of
patients to complete randomized clinical trials.

Investigational targeted agents in sarcoma

Sr. no. Agent Target Tumor Status

 Tyrosine Kinase   

 Inhibitors    

1 Sorafenib Multiple Angiosarcoma, solitary Phase II [115]

  kinases: Kit, fibrous tumor/

  VEGFR, hemangiopericytoma,

  PDGFR, Raf alveolar soft

   part sarcoma, clear cell

   sarcoma  

2 Imatinib Kit, Abl, Tenosynovial giant cell Retrospective

  PDGFR tumor/pigmented analysis of

   villonodular synovitis Data [101]

3 Crizotinib Alk/ Met IMT Phase I [116]

 Met Inhibitor    

4 Tinvatinib Met Alveolar soft part Phase II [99]

   sarcoma  

 mTORC1 Inhibitors    

5 Ridaforolomus mTORC1 Metastatic Soft tissue Phase

 (deferolimus)  sarcoma Phase I, III [119]

 Anti-Angiogenic Agents    

6 Bevacizumab VEGFR Angiosarcoma, solitary Phase II [114]

   fibrous tumor/
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   hemangiopericytoma,

   alveolar soft

   part sarcoma, clear cell

   sarcoma  

7 Cediranib VEGFR Angiosarcoma, solitary Phase I [118]

   fibrous tumor/

   hemangiopericytoma,

   alveolar soft

   part sarcoma, clear cell

   sarcoma  

 Anti PDGFR    

8 Olartumumab PDGFR-α Metastatic STS Phase II [118]

 Epigenetic Modifier   

 Inhibitor    

9 Vorinostat HDAC Synovial sarcoma Phase II [119]

Table 2: Sarcoma targeted agents (Investigational).

Gastrointestinal stromal tumor
GIST is a mesenchymal tumor showing differentiation toward the

interstitial cells of Cajal and may actually arise from this lineage or a
precursor [26]. Risk assessment for GIST using the NIH/NCCN/
Miettinen criteria are of therapeutic importance especially in deciding
for adjuvant imatinib therapy for higher risk localized tumors. These
criteria are quite different from the traditional French (FNCLCC)
grading system in which site and size of the tumor rather than mitotic
activity (indicator of aggressiveness of the tumor) are important.

The KIT receptor is important for normal development and
function of the interstitial cells of Cajal, hematopoiesis, gametogenesis
and melanogenesis [27-30] Constitutive activation of KIT (4q12~13)
or occasionally PDGFRA tyrosine kinase by oncogenic mutation plays
a key role in GIST pathogenesis [31,32]. In GIST, most of the
mutations (70-75%) involve the juxtamembrane domain of the KIT
receptor, in a hot spot region at the 5' end of exon 11 (codons 550- 560)
[27,33,34]. These mutations cause constitutive activation through loss
of the KIT negative regulatory functions .These commonly seen KIT
mutations in exon 11 are not associated with a specific
clinicopathologic phenotype. However, deletion mutations, specifically
those affecting codons 557 and 558, are harbinger of more aggressive
clinical course than substitution mutations [35-37]. Interestingly,
tumors with ITDs at the 3' end of exon 11 are often associated with
more indolent gastric tumors [34,38].

KIT mutations affecting exon 9 occur in 10-15% of cases. They are
aggressive, small bowel tumors and respond better to escalated doses of
imatinib [34,39]. About one-third of GISTs that lack KIT mutations
harbor mutations in PDGFRA (exons 12, 14 or 18) [33,40,41]. These
tumors tend to be of epithelioid morphology, gastric origin and
indolent behavior [41,42]. Approximately 10% of patients do not show
evidence of mutations in either KIT or PDGFRA and are often termed

"wild-type" GIST. These are seen particularly in pediatric patients or in
association with neurofibromatosis type 15 [43-45].

GIST is diagnosed on the morphologic features and reactivity with
KIT (CD117) and DOG1 by immunohistochemistry. However, about
4% of cases are negative for KIT by immunohistochemistry (KIT
negative GIST) [46]. The diagnosis in such cases should be supported
by ruling out other differential diagnoses such as smooth muscle
neoplasms, neural tumors and fibrous tumors. Molecular tests to
detect mutations in KIT or PDGFRA would be another adjunct to
support the diagnosis since KIT immunonegative GIST cans still
harbor mutations in these genes. The rate of response to imatinib
treatment varies depending on the type of mutation, as patients with
KIT exon 11 mutations have a much higher chance for response (84%)
than wild-type GIST (5%), and tumors with exon 9 mutations may
require a higher dose of imatinib for equivalent response [27,47]. GIST
remains the best example of a sarcoma in which the use of a kinase-
directed agent led to impressive clinical results [48]; notably for the
first time a survival advantage was shown for use of imatinib in the
adjuvant setting [49]. Patients who received 3 years of imatinib had
improved 5-year survival as compared with patients who received only
1 year of therapy. In metastatic setting, early assessment of treatment
response provides the opportunity to shift to an alternative therapy
(e.g., resection or sunitinib) if imatinib is ineffective. For those patients
who develop resistance to both imatinib and sunitinib, regorafinib is
indicated.

Another metabolic pathway genetic alteration which leads to a form
of GIST that occurs predominantly in children and young adults is
called “succinate dehydrogenase (SDH)-negative" form of GIST. In this
form, loss of SDH expression is observed, and may ultimately provide
new means to treat both these so-called "pediatric," syndromic GISTs,
and much more common KIT or PDGFRA mutant GIST [50,51].
Others may show smooth muscle or rhabdomyogenic differentiation
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on rare occasion [52]. About 50% of resistant tumors do not show
evidence of secondary mutation which suggest other mechanisms of
resistance such as KIT genomic amplification and activation of
alternative receptor tyrosine kinase protein in the absence of KIT
expression [27,53]. Often multiple mechanisms of resistance are seen
with multifocal recurrence during therapy and this has limited the
clinical utility of KIT genotyping in the setting of resistance.

Synovial sarcoma
Synovial sarcoma is role-model wherein a specific SS18-SSX

translocation product drives the phenotype of this cancer. Monophasic
and biphasic varieties of the cancer develop based on the SS18-SSX
subtype [54]. The cell of origin was suggested to be the satellite cell of
skeletal muscle, based on the context-dependent tumor growth seen
when the same transgene was introduced into different cell types [55].
It was found that Hsp90 inhibitors and histone deacetylase (HDAC)
inhibitors could be a useful option for this sarcoma subtype [56-59].
Gene knockdown or an HDAC inhibitor decreases synovial sarcoma
growth and causes apoptosis. These studies highlighted importance of
clinical trials using HDAC inhibitors in synovial sarcoma. The relative
lack of overlapping toxicity of HDAC inhibitors with cytotoxic agents
or kinase-directed agents has definitive advantage of using them in
combination.

Well differentiated-dedifferentiated liposarcoma (WD–DD
LS)
This is one of the most common and most frustrating diagnoses that

often occurs in the abdomen/retroperitoneum and notorious for
relapses and remissions ultimatly leading to deaths typically from local
disease progression rather than distant spread. Overall 8% of DD LS
were detected to have mutations in HDAC1 [60]. It suggest for other
epigenetic mechanisms by which WD–DD LS requires to survive with
several copies of the same sequencing encoding HDM2, CDK4, and
neighboring genes on chromosome 12q [61].

These data emphasizes the major role of amplification of
chromosome 12q [62]. This characteristic amplification brings into
focus the use of human homologue of murine double minute 2
(HDM2) or cyclin-dependent kinase 4 (CDK4) inhibitors in this form
of liposarcoma [63]. These tumors can be very genetically complex, but
they all have amplifications of the long arm of chromosome 12. There
are 2 specific amplicons: one is centered at cyclin-dependent kinase 4
(CDK4) and one is centered at MDM2. CDK4 and MDM2 may play a
role in the propagation and pathogenesis of these tumors, thus this has
led to the use of selective CDK4 inhibitors and selective MDM2
inhibitors.

Patients who have progressing disease can achieve SD when a drug
such as the CDK4 inhibitor palbociclib is used, can actually achieve
stable disease. There is a group of patients with these sarcomas that can
progress quickly through treatment, but there also is also a group of
patients that can have dramatic responses, sometimes complete
responses (CRs), and can also be on a drug for multiple years. The
extremes of responses in this patient population has now allowed for
the potential identification of pretreatment biomarkers that may be
able identify patients who will have dramatic responses and those who
do not respond to these therapies.

Dermatofibrosarcoma protuberance (DFSP)
DFSP is a mesenchymal spindle cell neoplasm charactersed by high

propensity for local recurrence and low risk for distant dissemination.
However, fibrosarcomatous differentiation confers a metastatic rate of
15 to 20% in DFSP.

DFSP is characterized by a translocation of chromosomes 17 and 22
t (17; 22)(q22; q13) or the formation of supernumerary ring
chromosomes which exhibit contributions from chromosomal regions
17q22 and 22q13, leading to the fusion of collagen 1 alpha 1 (COL1A1)
on chromosome 17 with platelet-derived growth factor-B (PDGFB)
[64,65]. This results in transcriptional up regulation of PDGFB gene in
the form of COL1A1-PDGFB fusion [66]. The PDGFB gene product is
a growth factor that acts as a ligand for the transmembrane receptor
kinase PDGFRB [67]. The post transcriptional fusion protein is capable
of inducing activation of its receptor through autocrine and paracrine
routes resulting in the propagation of a pro tumorigenic signal [68-70].

Imatinib interferes with PDGFRB signaling pathway by competing
with adenosine triphosphate (ATP) binding and consequently
preventing the tyrosine kinase receptor autophosphorylation and
downstream pathway activation [67]. In vitro data [71,72] as well
several case series and case reports showed good response to imatinib
treatment in locally advanced and metastatic DFSP [73-79]. DFSP with
fibrosarcomatous transformation (DFSP-FS) also respond to Imatinib
although the responses may be less durable. DFSP-FS with no
detectable translocation t (17;22) had shown no response to imatinib
and could represent either misdiagnoses or mediated through
unknown alternative pathways not responsive to imatinib [79].
Therefore, molecular testing can accurately predict likelihood of
response to Imatinib. Majority of DFSP is treated with local surgical
extirpation; imatinib is indicated in locally advanced/non resectable
tumors, metastatic/recurrent disease and as neoadjuvant therapy to
decrease the morbidity of surgery [67].

Perivascular epithelioid cell tumors (PEComas)
PEComas are a group of related mesenchymal neoplasms that

exhibit myomelanocytic differentiation [80-82]. They have a unique
immunohistochemical profile that includes reactivity to both
melanocytic markers (HMB45 and/or Melan-A) and smooth muscle
markers (actin and/or desmin). PEComas include angiomyolipoma
(AML), lymphangiomyomatosis (LAM), clear cell sugar tumor and
perivascular epithelioid cell tumor-not otherwise specified (PEComa-
NOS) [83]. These tumors are rare and usually arise sporadically,
however, LAM and AML are seen at high frequency with tuberous
sclerosis complex (TSC) [84]. They are generally benign and
recurrence after complete surgical resection is exceptional; however, a
subset exhibits more aggressive and malignant behavior with locally
invasive recurrences and/or distant metastasis [84]. It was found that
there is a germline loss of heterozygosity (LOH) at the TSC2 locus in
TSC-associated AML and LAM; TSC2 also seems to be more
commonly lost in sporadic cases than TSC1 [85-88]. These two tumor
suppressor genes (TSC1 and TSC2) encode proteins that have a role in
regulating cell proliferation via the Mtorpathway [89]. Theraputic
evidence of mTOR inhibitors were shown in AML and LAM [90-92].
Several case seriesand case reports have shown promising responses
with at least one case showing long term control (16 months), though
these tumors are not uniformly responsive [84,93,94]. In view of lack
of benefit of the traditional cytotoxic treatment in metastatic PEComa,
mTOR inhibitors should be considered in any patient with recurrent or
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metastatic disease [83]. Based on above data Sirolimus is approved in
the United States for treatment of pulmonary LAM.

Alveolar soft part sarcoma (ASPS)
ASPS is a relatively indolent variety of soft tissue sarcoma driven by

an unbalanced translocation between the chromosomes X and 17 (X;
17)(p11;25) resulting in fusion of ASPS critical region-1 gene
(ASPSCR1) located on chromosome 17q25 and the transcription factor
for immunoglobulin heavy chain enhancer 3 (TFE3) gene located on
chromosome Xp11.2269. The result of this gene rearrangement is one
of two novels functional ASPSCR1-TFE3 fusion proteins [94] induce
strong overexpression of the MET receptor tyrosine kinase gene in
ASPS cells [95]. In the presence of its ligand, hepatocyte growth factor,
the MET receptor tyrosine kinase undergoes strong
autophosphorylation, activating downstream signaling of the MAP
kinase and PI3K/Akt pathways [95].

Diagnosis of ASPS is made based on its characteristic microscopic
appearance, with immune histochemical study to detect TFE3 nuclear
expression and molecular techniques to detect gene rearrangement in
difficult cases [96]. Although, the best treatment modality of ASPS is
surgical resection is not feasible in advanced/metastatic disease
wherein chemotherapy and radiotherapy are also not very effective
[94,97]. Therefore, targeted therapy is an attractive option with its
advantages of less toxicity and daily outpatient use. Inhibition of the
overexpressed MET could be a potential target to decrease the cell
growth in such tumors. Other targetable molecules include MDK
(midkine or neurite growth-promoting factor-2) and Jag-1 (Jagged-1)
which is regulators for angiogenesis and both shown to be over
expressed in ASPS [98]. Tivantinib, a selective inhibitor of the Met
receptor tyrosine kinase, showed modest response and was tolerable
and safe for patients [99].

PVNS and GCT-TS
Patients with this disease can have collagen deposition, subchondral

bone erosions, and repeat hemarthrosis, which can actually be very
destructive to the joint and the bones. This usually causes significant
swelling, pain, decreased range of motion, and often can cause
functional impairment and the reliance on narcotics. Although this
may not threaten the patient's life, it can definitely change the
trajectory of the patient's life and cause a significant amount of
morbidity. The discovery of this translocation in the overexpression of
colony-stimulating factor 1 (CSF-1) led to the use of specific CSF-1
inhibitors that were available to us in the clinic in this setting [100]. A
retrospective analysis pooling data showed that the use of the CSF-1
inhibitor, imatinib mesylate, provided some modest responses [101].
Other stronger specific CSF-1 inhibitors are under investigation in this
setting, such as pexidartinib, which is a CSF-1 and KIT inhibitor (Table
2).

Promising newer agents
Trabectedin: Trabectedin was originally isolated from the sea

sponge Ecteinascidia turbinate, acts by interfering with the
deoxyribonucleic acid (DNA) nucleotide excision repair machinery
[102]. Trabectedin is an active agent for advanced STS, although the
objective response rate, by conventional criteria, is fairly low [103-107].
Highest response rates were in the myxoid/round cell liposarcoma and
leiomyosarcoma subtypes. Trabectedin was approved in the United
States for the treatment of patients with unresectable or metastatic

liposarcoma or leiomyosarcoma who have received a prior
anthracycline-containing regimen [108]. High response rate has been
seen in patients with advanced pretreated myxoid/round cell
liposarcoma (MRCL); in one study of 51 such patients, 51% had either
a complete or partial response, and 88% were progression-free at six
months [109]. The benefit of trabectedinin this subtype is in
concordance with clinical activity reported in patients with the
"translocationrelated"sarcomas [110].

Pazopanib: Pazopanibis a multitargeted, orally active, small
molecule inhibitor of several TKs. Single agent pazopanib showed
activity in a phase II clinical trial that included various STS subtypes
[111]. Pazopanib met the primary endpoint for activity in
leiomyosarcomas, synovial sarcomas, and other STS types, but not
liposarcoma. A worldwide, randomized, double-blinded, phase III
study (the PALETTE trial) compared pazopanib (800 mg daily) versus
placebo in 369 patients with a variety of histologic subtypes
(leiomyosarcoma, fibrosarcoma, synovial sarcoma, malignant
peripheral nerve sheath tumor [MPNST], vascular STS, sarcoma not
otherwise specified, but not adipocytic sarcomas or GIST) whose
disease had progressed during or after first-line chemotherapy [112].
The median PFS was significantly higher in the pazopanib group (4.6
versus 1.6 months), and benefit was consistent across all histologic
subtypes. There was no significant difference in overall survival (12.5
versus 10.7 months, hazard ratio 0.86, 95% CI0.67-1.1) [113]. The best
overall response was partial response in 6 versus 0% of the pazopanib
and placebo groups, respectively, and stable disease in 67 versus 38%.
Based upon these data, in April 2012, pazopanib was approved for
treatment of patients with advanced STS (but not for adipocytic or
GIST) who have received prior chemotherapy by FDA.

Bevacizumab: Bevacizumab is a monoclonal antibody targeting
VEGF. The combination of bevacizumab plus doxorubicin showed
some modest activity in 17 anthracycline-naive patients with
metastatic STS [114]. Although there were only two partial responses,
11 had stable disease for 12 weeks or more, depicting some activity of
this combination.

Sorafenib: Sorafenib, a tyrosine kinase activity has also been
evaluated in STS. In a phase II trial of 120 patients with six different
histologic types of STS who received sorafenib 400 mg twice daily,
there was one objective partial response among 37 leiomyosarcomas,
one complete and four partial responses among 37 angiosarcomas
(14%), and no objective responses in MPNST, malignant fibrous
histiocytoma, synovial sarcoma, or other histotypes [115].

Crizotinib: Crizotinib is an orally ATP-competitive inhibitor of the
ALK and MET tyrosine kinases. It has shown antitumor activity in
ALK-rearranged inflammatory myofibroblastic tumor [116].

Regorafenib: Regorafinib is a multikinase inhibitor, which has
demonstrated promising activity and an acceptable toxicity profile in a
recent randomized placebo-controlled phase II study (REGOSARC).
The trial included 110 patients with metastatic STS. The patients were
previously treated with doxorubicin, ifosfamide, trabectedin, or
pazopanib (median of prior lines 2, range 1-3). The median PFS
ofleimyosarcoma patients was 4 months with regorafenib versus 1.9
months with the placebo (HR=0.49; 95% CI 0.27-0.89; P=0.017) and
4.6 months versus 1.0 month with regorafenib and placebo,
respectively (HR=0.38; 95% CI 0.20-0.74; P=0.002) in other types of
STS [117].

Cediranib: Cediranib is a potent oral inhibitor of all three VEGFRs.
Its activity in alveolar soft part sarcoma was elucidated in a phase II
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trial of 46 patients with unrespectable disease [118]. The objective
response rate was 35%, and 60% had stable disease; the six-month
disease control rate was 84%.

Olartumumab: Olaratumab is a human anti-PDGFR-α monoclonal
antibody. PDGFR is a cell surface receptor that has ligands, which
upon ligand binding, dimerize and enable intracellular signaling and
for the growth of cells and interactions with the tumor
microenvironment, as well as angiogenesis in normal cells as well. One
randomised phase 2 study of doxorubicin plus olaratumab treatment
in patients with unresectable or metastatic soft-tissue sarcoma showed
encouraging results. The overall tumor response in the intention to
treat population was about 18% in the combination and 12% in the
doxorubicin only arm, and the difference was not statistically
significant. There was a PFS advantage in the combination vs. the
doxorubicin-only arm. There was a significant OS advantage for
patients who received the combination of olaratumab plus doxorubicin
vs. doxorubicin alone. Overall, the survival benefits seemed to be in all
subgroups including in tumors such as leiomyosarcoma [119].

Ridaforolimus: Ridaforolimus is an mTOR inhibitor, which has been
tested in a phase II trial in advanced STS. Out of 212 patients in this
study, 28.8% showed clinical benefit [119]. These encouraging results
led to a phase III trial (SUCCEED) which investigated maintenance
therapy with ridaforolimus after chemotherapy in patients with
metastatic STS. The PFS was improved with 52% gain in median PFS
(22.4 weeks versus 14.7 weeks for placebo; HR=0.72; P=0.001).
However, this trial did not show any benefit in OS.

Vorinostat: Vorinostat is a HDAC inhibitor, which has been tested
in heavily pretreated metastatic STS. In a recent Multicentric phase II
trial, 40 Soft Tissue Sarcoma patients were treated with vorinostat. Best
response after three cycles of treatment was stable disease (n=9, 23%).
Median progression-free survival and overall survival were 3.2 and
12.3 months, respectively. Six patients showed long-lasting disease
stabilization for up to ten cycles. Despite this low response in this trial,
it does call for further exploratory studies using this agent to find out
biomarkers for its activity.

Evolving Genomic Techniques: Genomic characterization of cancer
through next generation sequencing (NGS) techniques are
transforming our understanding of solid tumors and has been
deployed in the clinical setting to quickly genotype several to hundreds
of genes in a rapid fashion. Recently, both The Cancer Genome Atlas
(TCGA) of the National Institutes of Health (NIH) and the European
efforts toward the International Cancer Genome Consortium have
allocated resources to study multiple specific sarcoma types. It is hoped
that these efforts will provide a catalog of mutations or other genomic
disturbances relevant to sarcomas that will provide other potential
avenues for application of targeted and rational therapies.

Perspective
As our understanding of the mechanisms of tumorgenesis and the

pathways required for sarcoma survival and metastasis increases, it is
hoped that we can tailor our therapy to the presence of functional
genes: molecular profiling will become much more used in the near
future and more such targeted compounds may become reality.
However, much work is of course still needed to unfold the complex
personalized networks of tumor proliferation and resistance
mechanisms to better achieve the goal of truly personalized treatment
for sarcoma. Currently, there is some optimism that newer generations
of agents might prove effective in them.

Conclusion
Despite recent improvements in therapeutic management of

sarcoma, ongoing challenges in improving the response to therapy
warrants new approaches in terms of both agents and modes of
delivery, to improve overall patient survival. Recent years have
witnessed the phenomenal strides made in the treatment of sarcoma
driven by specific pathways; it suggest that [Paul] Ehrlich’s magic bullet
has at last been realized in the field of oncology. This is targeted
(intelligent) delivery of therapy, with much better tolerance providing
means to deliver therapy for longer periods with resultant better
disease control: greater efficacy, less toxicity. The therapeutic window
for this heterogeneous and difficult to manage group of malignancies
have been opened wider than ever before.

Unless spectacular new therapeutic opportunities arise-and, despite
all research efforts, these do not seem to wait around the corner-
optimization of therapies with incorporating targeted therapy will have
to be addressed in a big manner!
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