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The predominant accumulation of aggregated proteins is observed 
in neurodegenerative diseases such as Alzheimer’s and Parkinson’s 
diseases. Protein misfolding and aggregation is strongly regulated by 
molecular chaperones known as heat shock proteins (HSPs) including 
Hsp90, Hsp70, Hsp27, Hsp60, and Hsp40 among others. Recent research 
activity indicates that expression and activation of HSPs may prevent or 
reduce protein aggregation in Alzheimer’s disease, Parkinson’s disease, 
Polyglutamine disease, Prion disease, and other neurodegenerative 
disorders. In the present review, laboratory findings that implicate the 
role of HSPs in the development of neurodegeneration will be discussed. 
Furthermore, strong experimental evidence presented here show that 
expression and/or increased activation of HSPs by phytochemicals 
may prevent various neurodegeneration through preventing protein 
aggregation process and reduce the toxicity of the oligomers.

Molecular consequences of altered gene products, protein, 
glucose and lipid oxidation due to disrupted redox homeostasis 
lead to accumulation of unfolded and misfolded protein in the aging 
brain. Neurodegenerative diseases including Alzheimer’s, Parkinson’s, 
Huntington, and Friedreich ataxia share, a common denominator, 
production of abnormal proteins, mitochondrial dysfunction and 
oxidative stress. Alzheimer’s disease (AD) and Parkinson’s disease (PD) 
are two most prevalent neurodegenerative diseases that affect the elderly 
population. Aggregation of β-amyloid and hyperphosphorylation and 
subsequent tangle formation of tau protein is believed to promote 
Alzheimer’s disease [1,2], and tau suppression in a neurodegenerative 
mouse model improves memory function [3]. The exact cause of PD 
remains obscure, however, genes encoding α-synuclein, LRKK2, Parkin, 
DJ1, PINK1, ATP13A2, VPS35, FBXO7, GBA and EIF4G1 are implicated 
in the pathogenesis of and susceptibility to PD [4]. There is strong 
evidence that α-synuclein aggregation is an early step in the pathogenesis 
of PD [5]. α -Synuclein appears to be toxic upon overexpression and 
during misfolding or subsequent oligomerization [6].

In eukaryotic cells, misfolded proteins are degraded by the 
Ubiquitin-Proteasome System (UPS). Heat Shock Proteins (HSPs) 
including Hsp90 and Hsp70 along with cochaperones maintain 
proper folding of proteins or deliver misfolded proteins to ubiquitin-
proteasome system for degradation [7]. Under conditions of stress, HSPs 
and their cochaperones are upregulated to help prevent misfolding of 
endogenous proteins. However when such quality control mechanisms 
fail, the resultant misfolded proteins or oligomeric species thereof may 
become pathogenic [8].

Classic Hsp90 inhibitors have been shown to induce the expression 
of heat shock proteins by activation and translocation of Heat Shock 
Protein Factor 1 (HSF1) to nucleus [9,10]. HSF1, a master regulator of 
transcription, is a highly conserved transcription factor that plays an 
important role in longevity as well as in maintaining proteostasis and 
adequate response to proteotoxic stresses [11-13]. Induction of heat 
shock proteins has been shown to reduce aggregated proteins in brain 
including tau [14]. 

The naturally occurring antibiotic Geldanamycin (GA) was found 
to selectively inhibit Hsp90. Inhibition of Hsp90 first emerged as an 
antiproliferative strategy in the development of cancer therapeutics 
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because Hsp90 stabilizes a range of proteins (clients) involved in the cell 
cycle progression, cell survival and oncogensis. Hsp90 inhibition by GA 
has been shown to induce the expression of other HSPs and therefore 
attempts have been made to apply this concept to neurodegenerative 
diseases hoping that GA-induced HSPs expression may reduce 
proteotoxicity. Hsp90 inhibition by GA resulted in accelerated 
degradation of misfolded tau protein by activation of HSPs expression 
and activation of proteasome [15]. In numerous animal models, 
the neuronal toxicity associated with abnormally folded proteins 
has been successfully suppressed by HSP modulation including via 
the overexpression of Hsp70 and Hsp40 [16]. GA was also shown to 
induce heat shock response in an in vitro model of Huntington’s disease 
[17] and PD [18,19]. Furthermore, direct expression of Hsp70 in a
Drosophila model of polyglutamine disease was shown to suppress
neurodegeneration [20], and expression of Hsp70 in a PD model of
Drosophila supports the notion that HSPs prevent dopaminergic
neuronal loss associated with expression of α-synuclein in the fly
[21,22].

In this context, there is a strong impetus to study the potential use of 
traditional medicinal plants to prevent and reverse neurodegenerative 
diseases. Recent data indicates that bioactive plant compounds reduce 
aggregation of toxic proteins by activation and or expression of heat 
shock proteins. Bioactive plant compounds curcumin [23], celastrol 
[24,25], gambogic acid [26], and withaferin A [27] among others have 
been shown to induce the expression of HSPs. Additionally, curcumin 
has been shown to reduce soluble tau and increase HSPs in a human 
tau mice model [28]. These results indicate that even after tangles 
formation, tau-dependent behavioral and synaptic deficits can be 
corrected by curcumin treatment [28]. In a recent study, screening of 80 
bioactive plant compounds showed that shikonin induced expression of 
Hsp70 in human lymphoma U937 cells [29]. Neuroprotective properties 
of carnosic acid was studied in neuroblastoma SK-N-SH cells and it 
showed that carnosic acid protected cells from rotenone-induced stress 
by significant induction of Hsp70 expression [30]. 

Similarly, plants extracts have been shown to induce expression of 
HSPs. Adaptogenic substances derived from Eleutherococcus senticosus 
root extract, Schisandra chinensis berry extract, Rhodiola rosea root 
extract induced expression of Hsp70 from isolated human neurolgia 
cells [31]. Cichorium intybus extract have recently reported to increase 
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Hsp70 expression in C2C12 myoblasts [32]. Furthermore, an ethanolic 
leave extract of Jasminum sambac, a folk medicine, has been shown to 
increase expression of Hsp70 in rats [33]. This data strongly suggests 
that medicinal plant extracts and phytochemicals have great potential 
to prevent neurodegenerative diseases partly through activation of 
HSPs.

For complete list of HSPs-induced plant extracts and bioactive 
compounds contact the corresponding author.
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