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Editorial
The past two decades have marked significant advancements in the

field of drug design and development. With the emergence of more
sophisticated experimental techniques, advanced computational
methods and complementary technologies the current drug
development cycle is optimized for drug fishing [1-4] Meaning that, all
current efforts are maximized toward the search (and/or design) for
more potent small-molecules for the selective modulation of known
disease targets. Nevertheless, it is becoming increasingly evident that a
drug often tends to interact with more than one protein target or a
signaling pathway [5-7], a phenomenon that is usually referred to as
‘polypharmacology’ [5,6]. Such unintended off-target and multiple-
target interactions could cause unsafe side-effects [8], raising serious
concerns in drug research [9]. There have been several instances in the
past where drugs were withdrawn due to harmful side-effects; for
instance, in 2010, the pain medication propoxyphene was withdrawn
from the market due to its’ adverse effects to the heart (http://
www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/
ucm234350.htm). The Drug Bank database alone lists 201 such
withdrawn drugs (http://www.drugbank.ca/stats) and the mode of
actions and therapeutic targets of a number of them remain elusive.
The entire development cycle of a single drug, from research labs to
market, is too much a lengthy, painful and expensive process to be
squandered due to side effects from off-target interactions. On the
brighter side, some drugs could bind to different targets and elicit
positive responses in all; for example, Selvita was recently submitted as
an investigational new drug to FDA for SEL24, a dual inhibitor of two
promising targets of acute myeloid leukemia, PIM and FLT3 kinases
(http://www.selvita.com/news-events/news-releases/selvita-initiates-
ind-enabling-studies-for-its-first-in-class-pim-flt3-inhibitor). Thus,
the drug design field is seeing a rapid paradigm shift from a ‘one-drug-
one-target’ design to a multidimensional ‘one-drug-many-targets’
model, where the focus is mainly on the identification of all the
possible protein targets of an active small molecule (or target fishing)
[10]. Target fishing could also be useful in repurposing an existing or a
failed drug for new applications [11,12], thereby offering economic
benefits to drug research [5]. For instance, very recently scientists from
the University of Dundee have shown that the anti-tubercular drug
delamanid has the potential to be repositioned as an oral drug for
Visceral leishmaniases, one of the major diseases seen in developing
countries [13].

Given their significant impacts on drug design and development,
several strategies have been developed for target identification; these
approaches generally fall into three categories such as proteomics-
based, genomics-based and bioinformatics-based [7,14]. Several
excellent reviews discuss various target fishing methods in detail
[5,7,15-18]. Such methods have led to the de-convolution of several

functional targets of small-molecules [7,10,14,15,17]. Nevertheless, it is
obvious that the experimental identification and validation of targets
for a given small molecule, say through affinity chromatography, are
significantly limited by the need for horrendous costs, labor and time.
In addition, the experimental techniques are also prone to other
technical complexities arising from, to name a few, solubility concerns,
hydrophobicity of proteins and incorrect folding of enzymes in
experiments. As a result, computational target fishing methods have
become cost-effective alternatives, sometimes complementary, to
experimental techniques. Different computational methods, such as
chemical similarity search methods, data mining or machine learning
methods, bioactivity spectra analyses methods and molecular docking
methods, have been employed for in silico target fishing [19].
Chemical similarity search is the most popular ligand-only virtual
screening approach that functions on the assumption that small-
molecules with similar structural features bind against similar targets.
This method employs a set of 2D and/or 3D descriptors to compare the
query small-molecule against all the compounds with known targets in
a selected database (ChEMBL or PubChem, for instance) so as to
predict plausible protein targets of the compound of interest [20, 21].
Nevertheless, this approach often suffers from false positive and false
negative predictions, particularly when inactive and active compounds
display structural similarities [5]. In data-mining or machine learning
methods, the properties of known active compounds against a target
are analyzed carefully and statistical models are generated, which after
rigorous training are employed to predict the probable targets that
associate with the query compound, for examples refer to the following
studies [8,22,23]. The main limitation of this method is that every
target may bind structurally diverse classes of compounds and hence
one model may not cover all the features, consequently affecting the
performance in target fishing [5,16,20]. Bioactivity spectra analyses
methods work on the principle that compounds binding to same target
should display similar bioactivity spectra (i.e., the readouts from
microarrays, cell lines and in vitro screening) [5,19,24,25]. The
bioactive spectra collected from different targets and assays are later
employed in the computational method to predict targets for the
drugs. The important caveat of this method is the need to perform
expensive experiments to collect bioactivity spectra for different targets
[20]. Alternately, molecular docking methods for target fishing
employs a ‘reverse’ virtual screening approach, in which a compound
of interest is docked into a wide array of protein structures in public
databases, such as protein data bank (PDB), and the target in the best
scoring complex is predicted to be a probable partner of the query
compound [26,27]. Several online servers, such as TarFisDock [22],
INVDOCK [28] and idTarget [29], have been developed for this
purpose. However, the accuracies of these docking-based methods are
dependent on the efficacies of the scoring functions employed and the
availability of high-performance supercomputers. It is important to
note that PDB (www.pdb.org) currently contains only 31,794
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experimentally determined protein structures of humans, while the
total numbers of human protein sequences in the Uniprot database
(www.uniprot.org) is 133,514. Such a huge gap between the available
structures and sequences indicates that significant numbers of possible
targets of a query small-molecule could be missed during target fishing
predictions made by molecular docking methods. In addition, it is now
well established that small-molecule drugs also tend to bind in much
complicated protein surfaces, such as flat and wide shallow regions at
protein-protein interfaces [30,31] and transient cryptic binding
pockets [32] (i.e., cavities that are normally hidden and open only in
the presence of ligands) in enzymes. None of the above computational
methods are able to efficiently predict targets of small molecules, where
such complex interactions are involved. Thus, there is a significant
room for improvements in computational methods so as to achieve
more effective and promising in silico target fishing for small-molecule
drugs.

Target identification for small-molecule drugs remains a critical, but
very difficult, phase in modern drug design and development. Robust
target fishing extends multitude benefits to drug research, such as
avoiding unwanted side effects from poly pharmacology of small-
molecules at clinical stages, to reveal the mode-of-actions of a
compound and also to repurpose old drugs for new targets. The rule of
‘one-size-does-not-fit-all’ still holds good in target fishing approaches
as well. Therefore, it is important to carefully assemble the available
methods and resources such that all levels of biological information,
from sequences to structures to pharmacophores, are maximally
utilized for fishing out the targets for the design of safer next-
generation drugs.
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