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Abstract

One-third of the world's population is infected with tuberculosis, only 10% will develop active disease and the
remaining 90% is considered to have latent TB (LTB). While active TB is contagious and can be lethal, the LTB can
evolve to active TB. The diagnosis of TB can be challenging, especially in the early stages, due to the variability in
presentation and nonspecific signs and symptoms. Currently, we have limited tools available to diagnose active TB,
predict treatment efficacy and cure of active tuberculosis, the reactivation of latent tuberculosis infection, and the
induction of protective immune responses through vaccination. Therefore, the identification of robust and accurate
tuberculosis-specific biomarkers is crucial for the successful eradication of TB. In this commentary, we summarized
the available methods for diagnosis and differentiation of active TB from LTB and their limitations. Additionally, we
present a novel peptide microarray platform as promising strategy to identify TB biomarkers.
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Introduction
Mycobacterium tuberculosis (Mtb), the causative agent of

tuberculosis (TB), is surrounded by a cell wall rich in waxes and lipids
which contributes to its high resistance to treatment and provides a
survival benefit under unfavorable conditions either in the
environment or in the host [1]. Mycobacteria require high oxygen
tension to grow, thus the respiratory system provides the best
environment for Mtb to grow and to spread through exhalation and
expectoration [2]. Alveolar macrophages (AMs) in the lungs are the
reservoir of Mtb. The host response to Mtb infection involves a
complex interplay between mononuclear phagocytes, T and B
lymphocytes. Initially Mtb are taken up into phagosomal
compartments of macrophages, then undergo processing and
presenting mycobacterial antigens to the surrounding T lymphocytes
[3]. Activated T cells secrete cytokines and chemokines to keep the
macrophages in an activated state and recruit other immune cells to
the site of infection [4]. CD4+ T cells are considered to play an
important role in mediating a protective cellular immune response
against Mtb by secreting cytokines and also serve as cytotoxic effector
cells capable of directly lysing targeted cells. Additionally, B
lymphocytes are a prominent component of tuberculosis granulomas
and emerging evidence suggests that humoral immunity plays an
important role in modulating immune responses against Mtb [5-7].
This suggests that serum antibodies are equally important as T cell
based immunity in combating mycobacterial infections.

Tuberculosis (TB) remains the most common infectious disease and
global health problem. The World Health Organization (WHO)
estimated nine million new cases and 1.5 million deaths from TB in
2013 [8]. Based on the WHO data one-third of the world's population

is infected with Mtb complex and considered to have latent TB (LTB).
The host's immune system typically prevents the organism from
spreading beyond the primary site of infection, approximately 5 to 10%
of these latent Mtb infections progress to active disease. Active TB is
contagious and lethal with a mortality rate of greater than 50% in
untreated individuals [8]. Therefore, early diagnosis of active TB is a
crucial step in the success of treatment. The diagnosis of TB can be
challenging, especially in the early stages, due to the variability in
presentation and nonspecific signs and symptoms. In patients with
smear negative TB early detection is even more difficult because of low
numbers of bacilli in clinical samples [9]. Furthermore, there are
limited tools available to predict treatment efficacy and cure of active
tuberculosis, the reactivation of latent tuberculosis infection, and the
induction of protective immune responses through vaccination.
Therefore, the discovery of robust and accurate tuberculosis-specific
biomarkers is crucial for the successful elimination of TB.

Here we summarize the conventional approach and new
perspectives in TB detection. Additionally, we present a peptide
microarray platform as a promising strategy focusing on the
interaction between innate immunity and the humoral immune system
to identify TB serum biomarkers. This may enable us to discover
unknown epitopes targeting Mtb antigens leading to a better
understanding of host defenses against Mtb.

Direct sputum smear microscopy is most commonly used to
diagnose active TB. Microscopic examination of sputum is relatively
rapid, inexpensive, and widely available for routine diagnosis of TB in
developing countries. However, sputum smear microscopy is only
60-70% sensitive compared to the higher sensitivity of sputum culture
for active TB. The sputum culture can take up to 8 weeks to obtain
results and has a limitation in detecting extra-pulmonary TB.
Importantly, this test cannot identify individuals with latent TB
infection. Recently, the WHO endorsed the GeneXpertMTB/RIF test

Talwar et al., Mycobact Dis 2016, 6:2 
DOI: 10.4172/2161-1068.1000214

Commentary an open access journal

Mycobact Dis
ISSN:2161-1068 MDTL, an open access journal

Volume 6 • Issue 2 • 1000214

Mycobacterial Diseases

M
yc

ob
acterial Diseases

ISSN: 2161-1068



for the detection of mycobacteria in sputum [10]. This test is a
cartridge-based, automated diagnostic test that can rapidly identify
Mtb DNA and its resistance to rifampicin, by nucleic acid
amplification technique (NAAT) in less than 2 hours [10,11]. The cost
and complexity of the GeneXpert is a concern for broad based
implementation in low-resource settings. For rifampicin resistance
detection, Xpert MTB/RIF provides accurate results and can allow
rapid initiation of multidrug resistant treatment. This assay has lower
sensitivity towards smear-negative pulmonary and extrapulmonary
diseases [11-13]. However, this test cannot detect latent TB.

Cytokine Based Tests Assessing Predominantly T cell
Response

Two Interferon gamma release assays (IGRAs) approved by the U.S.
Food and Drug Administration (FDA) are the QuantiFERON-TB Gold
In-Tube test (QFT-GIT) and the T-SPOT TB Test (T-Spot) [14,15].
Both tests assess IFNγ production of T cells after in vitro stimulation of
whole blood or PBMCs with Mtb specific antigens such as ESAT6,
CFP10 and TB7. The results can be obtained within 24 h. Major short
comings of the QFT and T-Spot are the lack of its ability to distinguish
between latent TB and active TB as well as low performance in
endemic area in immunocompromised patients and children less than
five years of age [16]. Dual-color Reverse Transcriptase-Multiplex
Ligation dependent Probe Amplification (Dual-color RT-MLPA) is
another assay that utilizes whole blood to evaluate the quantitative
changes in gene expression profiles. This assay can differentiate
between active TB, treated TB, latent infection or healthy controls, but
needs further validation in larger prospective cohort studies [17].

Serological Biomarkers for Active Tuberculosis
Serological tests based on the detection of circulating antibodies

against Mtb-specific antigens have several theoretical advantages, as
they are simple, cheap, and feasible for point of care diagnostics. These
tests are developed using specific TB antigens. However, comparative
available studies have sensitivities ranging from 0.09% to 59.7% with
specificities from 53% to 98% [18,19]. Similarly, strategies to detect
various circulating cytokines in serum or antibodies in urine samples
as adjunctive biomarkers for the differential diagnosis of active and
latent TB as well as non-tuberculosis mycobacteria diseases (NTM)
[20-24] yielded less reliable results.

Role of B Cells and Serum Antibodies in Host Defense
Against Mtb
The protective role of B cells and humoral immune responses in

tuberculosis has been regarded as inferior to the cellular immunity
directed towards the intracellular pathogen Mtb [25]. Despite being a
facultative intracellular pathogen, Mtb is potentially susceptible to
various mechanisms of antibody-mediated immunity. Opsonization
through FcγR was shown to promote phagolysosomal fusion and
intracellular killing [26,27]. Besides the well-known role of B cells in
providing a robust T cell response against Mtb through secretion of
various cytokines and chemokines, recent studies highlight the
importance of B cells in the modulation of neutrophil function and
granuloma formation [7,28-30]. In animal models, there is increasing
evidence that mice with defective humoral immunity are more
susceptible to TB. Additionally, passive transfer of antibodies to Mtb
antigens protects mice against TB [31,32]. Interestingly, Ashenafi et al.
[30] found that BCG-specific IgG-secreting peripheral plasmablasts

could be successfully utilized as a host-specific biomarker for TB
diagnosis, even in subjects with impaired T cell function, including
HIV positive subjects, and subjects with culture negative TB. Thus, the
detection of Mtb-specific antibody responses in sera of TB patients
provides an important step not only for TB diagnosis but also for the
development of new vaccines and monitoring of the immune response
after vaccination. There is a need for a new conceptual approach to
understand the complex host immune response to Mtb, beyond cell-
mediated immunity, including the mechanisms of humoral immunity
and antibody formation.

Peptide microarray technology allows the testing of several
thousand unique epitopes displayed as linear peptides on a slide to
detect humoral immune responses in an unbiased fashion. In our lab,
we developed a high throughput method using T7 phage display cDNA
library [33]. This cDNA library was derived from mRNA isolated from
bronchoalveolar lavage (BAL) cells and leukocytes of sarcoidosis
patients. The combination of BAL cells and leukocytes likely contains
all cellular players of the immune response against pathogens
including antigen presenting cells (APC), T and B cells, and
neutrophils. Thus, this method utilizes the immune repertoire, which
can be immunoscreened using serum as the source of antibodies to
identify disease-specific antigens (Figure 1).

This library was differentially biopanned with healthy control sera
and sarcoidosis sera to enrich for sarcoidosis specific antigens. A
microarray of these antigens was constructed and then
immunoscreened with the sera of healthy controls and sarcoidosis
patients. Surprisingly, by immunoscreening the same microarray
platform with the sera of culture positive TB subjects, we identified 50
antigens that differentiated between TB, sarcoidosis and healthy
controls [33]. Sarcoidosis is a granulomatous disease with striking
clinicopathological similarities to TB [34,35].Proteomic and genomic
studies to identify sarcoidosis antigens led to identification of various
Mtb related antigens including mycobacterial catalase-peroxidase
(mKatG) indicating Mtb as a potential etiologic factor in sarcoidosis
[34-41]. The fact that immunoscreening of our T7 phage cDNA library
derived from polyA mRNA obtained from BALs and leukocytes of
sarcoidosis patients could identify a panel of specific antigens to
classify TB from sarcoidosis and healthy controls, suggests of the
presence of TB antigens in cDNA library [33].

T7 phage display method has several advantages; the life cycle of T7
phage is far faster so that the process of cloning is more rapid.
Additionally, several libraries can be pooled and screened in parallel.
We used the bar coding strategy for the identification of T7 phage
clones from a pool of T7 phage cDNA libraries [33]. Immunoscreening
requires only minimal amount of serum and it is relatively cheap and
non-invasive. Additionally, same platform can be immunoscreened
with various categories of patients, including immunocompromised
patients. In the process of immunoscreening, we have identified 164
antigens specific for smear negative but culture positive TB and
exclusively recognized by antibodies present in TB sera. These results
provide evidence that TB specific antibodies are generated and can be
detected in TB patients and this may prove to be useful in developing
biomarkers to diagnose TB as well as to differentiate between active TB
and latent TB. Our hypothesis is that latent TB versus active TB has a
different immune response profile to our T7 phage cDNA antigen
library and that it can be characterized by a reasonable small set of
biomarkers. These set of biomarkers will enable us to distinguish active
TB from latent TB and non-infected sera. Furthermore, the specific TB
antigens that were identified in our lab using T7 phage display cDNA
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library may aid to develop a TB vaccine that will generate specific
humoral response against Mtb.

Figure 1: Schematic diagram of discovery of TB antigens. A cDNA
library was constructed from a pool of mRNA isolated from BALs
of 20 subjects and leukocytes from 36 sarcoid patients, and then
combined with mRNA extracts from cultured human monocytes
and human embryonic lung fibroblasts. After digestion, the cDNA
library was inserted into a T7 phage vector and packaged into T7
phages to generate a cDNA-phage-display library. After four rounds
of biopanning, enriched specific peptide clones were cultured onto
LB agar plates. A total of 1152 single colonies, including positive
and negative clones were randomly picked and propagated into 96-
well plates. Phage-clone lysates were then printed robotically onto
coated glass slides to create the phage-protein microarray. Cy5 (red
fluorescent dye)–labeled antihuman antibody was used to detect
IgGs in human serum that were reactive to peptide clones, and a
Cy3 (green fluorescent dye)–labeled antibody was used to detect the
phage capsid protein in order to normalize for spotting. A total of
115 sarcoid sera, 64 healthy control sera and 17 TB sera were tested
on the 1152 phage peptide microarray platform. Bioinformatically
analyzed data identified 238 TB antigens differentiating TB sera
from healthy controls sera and 380 TB antigens vs sarcoidosis. Right
side of the diagram simplifies the complex recognition and
phagocytosis of bacteria (e.g. Mtb) by antigen presenting cells
(alveolar macrophages, dendritic cells and others), followed by
antigen processing and presentation to T and B cells, formation of
memory T and B cells and finally providing T and B cell immunity
against Mtb in form of IgG. The left side of the diagram models the
technology of combining phage-display, protein microarray derived
from human APC as bait to capture immunoglobulins from human
sera. Finally, using bioinformatics to select highly specific and
sensitive panel of clones for the diagnosis of TB.
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