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Introduction
Although the cause of systemic lupus erythematosus (SLE) is 

unknown, intensive investigation into the nature of the autoimmune 
response that underlies SLE, has revealed several key signaling 
aberrations that can be exploited therapeutically (summarized in 
Figure 1). For example, the cytokine B lymphocyte stimulator (BLyS), 
shown to be increased in SLE, was targeted with a monoclonal antibody 
resulting in a modest yet significant improvement in SLE disease 
activity [1]. Despite these advances, the treatment of SLE patients is 
still based on non-specific immunosuppressants that have significant 
off-target effects. 

The Nature of T cell Response in SLE
The abnormal immune response in SLE is in large part driven by 

a misguided T cell. More precisely, SLE T cells fail to appropriately 
regulate (suppress) the immune responses, provide excessive help to B 
cells to produce autoantibodies and invade tissues such as the kidneys, 
causing in situ damage. What became apparent early on in the study 
of SLE T cells is that they respond to T Cell Receptor (TCR) stimuli 
in a unique way. Pivotal cytokines such as interleukin (IL)-2 are not 
produced at high enough levels while co-stimulatory molecules such 
as CD154 (CD40ligand, CD40L) that provide help to B cells show high 
and sustained expression [2].

Part of the answer for this aberrant SLE T cell behavior lies in the 
structure of the TCR itself and its distribution on the surface of SLE 

T cells. The TCR heterodimer associates with the CD3 complex that 
transduces inward the signal created when the TCR binds to its cognate 
antigen. In SLE T cells, the canonical CD3ζ chain, the main signal 
transducing molecule in the CD3 complex, is decreased and in part 
substituted by the FcRγ chain. This CD3ζ to FcRγ substitution leads 
to the recruitment of the spleen tyrosine kinase (Syk) to the TCR/CD3 
complex. Syk in turn leads to excessive calcium flux in the T cell, which 
causes hyper-stimulation of the T cell. 

The activation of SLE T cells is further enhanced by the alignment 
of the TCR in lipid rafts. The lipid rafts are cholesterol rich areas of 
the T cell membrane that help bring together the surface signaling 
molecules. In SLE T cells unlike healthy individual T cells, lipid 
rafts are aggregated in one pole of the cell further facilitating SLE T 
cell activation. Furthermore, decrease in glutathione and excessive 
oxidative stress lead to mitochondrial hyperpolarization in SLE T 
cells, in turn contributing to activation of the mammalian target of 
rapamycin (mTOR) pathway, a regulator of post activation cell fate.

The effect of these proximal events in SLE T cell signaling together 
with other yet unrecognized factors is the imbalanced activation of 
cytoplasmic enzymes, mainly kinases and phosphatases. Activated SLE 
T cells show high activity of the calcineurin-nuclear factor of activated 
T cells (NFAT) pathway, protein phosphatase (PP)2A, mTOR, rho 
kinase (ROCK), Calcium/Calmodulin kinase IV(CaMKIV) and c-jun 
N-terminal kinase (JNK) pathways, while the ERK pathway is down-
regulated. These changes in the cytoplasmic signaling cascades lead
to excessive nuclear recruitment of the transcription factors NFAT,
c-jun, and c-AMP response element modulator (CREM) and the
decreased expression of the transcription factor c-fos in the nucleus
of the cells. Furthermore they facilitate the de-acetylation of histones
and hypomethylation of DNA in SLE T cells. Imbalanced transcription 
factor recruitment on gene promoters, histone deacetylation and
hypomethylation of these promoters are the hallmark of SLE T cell
activation. The end result is the production of certain proinflammatory 
cytokines such as IL-17A. Moreover, these signaling events lead to the
increased and sustained expression of surface molecules such as CD154 
that provides help to B cells and CD44 that enables cell adhesion and
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Figure 1: Signaling aberrations in Systemic Lupus Erythematosus T cells.
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migration. Finally deficient IL-2 as well as increased mTOR activity are 
contributing to deficient T regulatory cell function. 

SLE T Cells as Therapeutic Targets
One of the most obvious targets for therapeutic intervention is the 

rewired TCR receptor in SLE T cells. Moulton et al. [3] identified the 
splicing protein alternative splicing factor/splicing factor 2(ASF/SF2) 
as regulator of the CD3ζ chain expression in human T cells. ASF/SF2 
increases the levels of CD3ζ chain mRNA by limiting the expression of 
the alternatively spliced unstable mRNA isoform. More importantly, 
forced expression of ASF/SF2 results in normalization of the CD3ζ 
levels and subsequent restoration of IL-2 production in vitro by SLE 
T cells [3].

T cell hyperactivity can also be suppressed by targeting the kinase 
Syk. Syk can be blocked by the small molecule fostamatinib (also 
called R788), which is in late stage development for the treatment of 
rheumatoid arthritis [4]. R406 (the active metabolite of R788) was 
shown to normalize the hyperactive phenotype of SLE T cells in vitro 
without having an effect on healthy donor T cells. When given in mice, 
R788 prevented the development of nephritis and dermatitis and even 
had an effect in mice with established nephritis [5].

The oxidative stress and subsequent mTOR activation in SLE 
T cells was addressed in two studies. In the first open label study, 
rapamycin, that binds mTOR, was found to be effective in decreasing 
disease activity as measured by SLE disease activity index (SLEDAI) 
and corticosteroid use [6]. Importantly the treatment with rapamycin 
resulted in decreased calcium flux by SLE T cells. N-Acetyl Cysteine 
(NAC) which repletes glutathione and thus reverses mitochondrial 
hyper polarization, was also shown by the same group to have a modest 
effect on SLE disease activity in a large placebo controlled trial [7]. 

As discussed earlier the hyperactivated SLE T cell acts as a 
potent helper to B cells for the production of high affinity pathogenic 
autoantibodies in SLE. This interaction is facilitated by increased and 
prolonged expression of CD154 on SLE T cells. Direct inhibition of 
this molecule with a monoclonal antibody decreased production of 
dsDNA and increased C3 levels; moreover hematuria disappeared in 
all (5/18) patients who had hematuria at baseline. Nevertheless the 
study was prematurely stopped due to excessive thromboembolic 
events  [8]. This may have been due to off-target effects of the antibody 
on platelets and hence a strategy to inhibit CD154 production in T cells 
is more attractive than direct non-specific inhibition with antibodies. 
CD154 expression is dependent on the calcineurin-NFAT pathway 

and hence amenable to inhibition by calcineurin inhibitors. In a recent 
study, dipyridamole, recently recognized as a calcineurin-NFAT 
inhibitor, blocked the expression of CD154 by T cells, prevented the 
development of dermatitis and alleviated nephritis in lupus prone 
mice [9]. Dipyridamole, a drug with a long track record and favorable 
side-effect profile when compared to traditional calcineurin inhibitors 
cyclosporin and tacrolimus, represents therefore a potentially novel 
treatment for SLE patients. 

The abnormal SLE T cell activation can also be corrected by directly 
altering the methylation of DNA and acetylation of histones, two of the 
most important epigenetic factors used by T cells to activate their genes. 
The histone deacetylase (HDAC) inhibitor trichostatin A has been 
found to reverse the abnormal SLE T cell signaling phenotype including 
the expression of CD154, and intereferon gamma [10]. Trichostatin 
ameliorated disease in lupus prone mice [11], suggesting that it may 
be effective in patients with SLE. The HDAC inhibitor suberoylanilide 
hydroxamic acid (SAHA) was also shown also to ameliorate disease in 
MRL/lpr cells without affecting autoantibody production [12]. SAHA 
or vorinostat is currently being used as a treatment for cutaneous T cell 
lymphoma.

SLE T cells besides helping B cells, produce various pro-
inflammatory cytokines. Of particular importance is the observation 
that SLE T cells in the peripheral blood and kidneys of patients with 
nephritis are IL-17 producers. IL-17 is an important pro-inflammatory 
cytokine that is being targeted in a variety of autoimmune diseases. 
Using lupus prone mice, it was shown that IL-17 production can be 
decreased in the absence of the receptor for the IL-23. Indeed, IL-23 
receptor deficient lupus prone mice were completely protected from 
development of lupus [13]. These preclinical experiments suggest 
that SLE is a good target for the emerging IL-17 and IL-23 targeting 
therapies [10].

SLE T cells orchestrate the inflammatory response in target tissues 
such as the kidney. The process of migration of SLE T cells into these 
organs is facilitated by the enhanced expression of CD44 and its 
association with the phosphorylated of Ezrin Radixin and Moesin 
(ERM). Inhibition of ERM phosphorylation by rho kinase (ROCK) 
inhibitors resulted in a significant impairment of SLE T cell migration 
in vitro [14]. Interestingly ROCK plays an important role in the 
development of Th17 cells in both mice and humans [15, 16] and its 
activity is increased in a subset of patients with SLE [16]. Therefore 
targeting ROCK may decrease T cell migration to the kidneys and local 
production of inflammatory cytokines. Indeed the ROCK inhibitor 

Target Modality Effect
TCR ASF/SF2 forced expression Increase in IL-2 production in vitro

Syk Fostamatinib Normalization of calcium flux  in vitro
Amelioration of disease in lupus prone mice

mTOR 1.   Rapamycin
2.   N-Acetyl cysteine

1. Improvement of SLE disease activity in patients and decrease in corticosteroid use
2.  Improvement of SLE disease activity in patients

CD 154
1.	 Anti-CD154 antibodies
2. Tacrolimus/Cyclosporine
3. Dipyridamole 

1. Improvement of serological activity and hematuria. Trials stopped due to myocardial infarctions.
2.	 Used in patients with lupus nephritis
3. Ameliorated disease in lupus prone mice

HDAC 1.	 Trichostatin A
2.	 Vorinostat

Decrease expression of interferon gamma in vitro
Amelioration of disease activity in lupus prone mice

IL-23 IL-23 receptor deficiency Amelioration of immune activation and nephritis in IL-23 receptor deficient animals
ROCK Fasudil Amelioration of disease in lupus prone mice

CaMKIV KN93 Increase in IL-2 production in vitro
Amelioration of disease through inhibition of Interferon gamma in lupus prone mice 

Treg 1. IL-2 infusion
2. Treg cell therapy

1. Effective in graft versus host patients
2. Amelioration of disease in lupus prone mice

Table 1: N-acetyl cysteine and dipyridamole together with anti-IL17/IL-23 monoclonal antibodies show significant promise as T cell targeting SLE therapies.
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fasudil ameliorated nephritis in lupus prone mice [17], opening the 
way for human trials.

In addition to the aforementioned mechanisms, SLE T cells 
fail to appropriately regulate the immune response appropriately, 
partly due to decreased production of the Treg trophic cytokine 
interleukin-2. Several mechanisms have been shown to cause IL-2 
deficient production by SLE T cells. One of the most prominent is 
the upregulation of CaMKIV that recruits the transcription repressor 
CREM to the IL-2 promoter [18]. Indeed, the small molecule inhibitor 
of CaMKIV, KN-93 was shown to be effective in ameliorating disease 
in lupus prone mice [19]; KN-93‘s main effect though was inhibition 
of interferon gamma production suggesting that CaMKIV may be 
important for multiple pathogenic pathways in SLE. 

In a very important study in patients with graft versus host disease, 
low dose IL-2 may boost preferentially Treg function without causing 
widespread immune activation [20]. Therefore, reconstituting IL-2 
production by T cells or exogenous IL-2 infusion hold promise to 
improve Treg function in SLE as well. A more ambitious approach 
would be to isolate and expand Treg in vitro and re-infuse them in 
SLE patients. Indeed, this has been shown to be feasible and effective in 
lupus prone mice [21] opening the way for cell based therapy in SLE.

Conclusion
New molecules like fostamatinib and established medications 

like rapamycin, N-acetyl cysteine and dipyridamole together with 
anti-IL17/IL-23 monoclonal antibodies show significant promise as T 
cell targeting SLE therapies (summarized in Table 1). Large placebo-
controlled studies will be needed to establish their usefulness and their 
exact place in the treatment regimens for SLE.
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