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Abstract
Antigenic stimulation of T cells initiates a change from the resting state into an activated one mediated by 

triggering the T cell receptor (TCR). This change is characterized by rapid proliferation, differentiation and acquisition 
of effector functions. To maintain the energetic needs accompanied by this processes, T cells are able to adapt 
their uptake and utilization of extracellular nutrients. Proliferation and differentiation into distinct subsets of T 
lymphocytes like effector-, regulatory-, and memory T cells is mediated by antigens, various cytokines and growth 
factors through their respective signaling pathways they trigger. Since these subsets acquire different functions in the 
immune system, their metabolic profiles also differ. Throughout the last decade the role metabolism was intensively 
investigated and evolved into one major part in understanding activation and differentiation processes in T cells. Key 
molecules like AKT and AMPK were described to be major regulators of metabolism. Therefore, we discuss in this 
review which signaling molecules are known regulate metabolic pathways in T cells and we give an overview over 
the mechanisms how they accomplish this task.
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Introduction
T cells play a central role in the immune system and are important 

for cell mediated immunity. A functional immune response requires 
rapid cell growth, proliferation, and the production of effector proteins. 
In the presence of specific antigens T lymphocytes must rapidly shift 
from a resting state to an activated one to accomplish these tasks. 
The activation of T cells is accompanied by a huge demand for ATP; 
the universal energy carrier in cell metabolism. The main processes 
to generate ATP are glycolysis and the citric acid cycle followed by 
oxidative phosphorylation. In resting T cells oxidative phosphorylation 
was described to be the central energy producing process [1,2]. 
Furthermore it was described that upon activation the energy produced 
by oxidative phosphorylation in resting cells is not sufficient. Therefore 
lymphocytes undergo a metabolic shift to an increased glycolytic rate, 
which leads in turn to lactate production [3-5]. This reprogramming of 
cellular metabolism is described in the literature as anaerobic glycolysis 
for example during intense muscular activity [6] where myocytes 
switch their metabolism under “working” conditions, in the absence 
of oxygen, towards elevated levels of glucose transport and high rates 
of glycolysis. However Otto Warburg first observed these features 
for cancer cells in the presence of oxygen [7] therefore it was called 
“aerobic glycolysis”. Aerobic glycolysis was long thought to be a feature 
unique to cancer cells. However, we now know that the Warburg effect 
is also observed during the rapid proliferation of primary T cells, and 
it is viewed as a general feature of anabolic metabolism [5,8]. Anabolic 
metabolism is a characteristic feature of proliferating cells, which have 
to synthesize all cellular material in order to form two daughter cells. 
Therefore they require energy carriers like ATP and macromolecular 
precursors to generate biomass in form of proteins, ribonucleotides 
and lipids. By upregulating their glycolytic rate, cells become capable 
to maintain these anabolic mechanisms.

In the last years the focus shifted from metabolism itself to the 
question of how T cells regulate this metabolic shift. During the immune 
response T cells become activated by triggering of the T cell receptor, 
which initiates specific signaling events. This includes the activation 
of the phosphoinositide-3-kinase(PI3K)/Proteinkinase B (AKT) 
pathway, mammalian target of rapamycin (mTOR), and adenosine-
monophosphate- activated protein kinase (AMPK), which were shown 

to play a central role in regulating T cell metabolism [2,4,5,9,10]. In 
this review we will focus on AKT and AMPK, how these signaling 
molecules can regulate metabolic pathways in T cells and provide an 
overview of potential mechanisms used to accomplish this task. 

Changes in T cell Metabolism upon Activation
Resting T cells require relatively low amounts of energy for 

housekeeping functions, i.e. homeostasis. Most of this energy is 
produced by oxidative phosphorylation (OXPHOS) through the 
degradation of glucose, fatty acids, and glutamine [1,2]. Upon 
activation, cellular programs direct T cells towards proliferation, 
differentiation, and cytokine production. The subsequent need for 
energy and metabolic precursors was shown to be accomplished by a 
strong upregulation of glycolysis [4,11], which is characterized by an 
increased uptake of glucose, increased expression of glycolytic enzymes 
and the generation of lactate from pyruvate. Although the generation 
of ATP by glycolysis is inefficient when compared to OXPHOS 
(2ATP<36ATP), upregulating glycolysis has the advantage of being a 
fast process and was shown to protect cells against apoptosis [11-13]. 
Since upregulating glycolysis without a corresponding increase in 
OXPHOS would lead to an accumulation of the end product pyruvate, 
it was shown that the excess pyruvate generated is converted to lactate 
by lactate dehydrogenase [4,14]. This step is essential to regenerate the 
reducing agent NADH, which is needed to maintain the high glycolytic 
turnover. Since high concentrations of lactate are toxic to the cells, the 
lactate produced is also secreted.

These observations lead to the conclusion that glucose is the major 
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energy source of activated lymphocytes. This was also confirmed 
by showing that removing glucose in activated T cells leads to an 
inhibition of T cell proliferation and cytokine production [11]. In 
addition, also other metabolic pathways have been shown to play a role 
in T cell metabolism, e.g. increased glutamine consumption was shown 
to be essential for T cell function [8,15,16]. Glutamine is degraded via 
the TCA cycle, providing a nitrogen source for non-essential amino 
acids and nucleotides, and refilling the intermediates of the TCA cycle 
which are also used for biosynthetic processes that are essential for 
maintaining T cell proliferation [8]. At the end of the TCA-cycle malate 
dehydrogenase converts the generated malate to pyruvate. This pyruvate 
together with an upregulated glycolysis can foster the generation of 
lactate. Beside the generation of ATP, T cells also require NADPH 
to support lipid and nucleotide biosynthesis. NADPH is generated in 
two different processes, the pentose-phosphate-pathway dependent on 
glucose-6-phosphate and the last step of glutamine degradation – the 
conversion from malate to pyruvate. This suggests that glucose and 
glutamine are the major nutrients needed for proliferation in T cells.

AKT and AMPK in T cell Metabolism
The most prominent pathway responsible for upregulating 

glycolysis is the PI3K/AKT pathway. In T cells, coligation of the TCR 
and CD28 lead to direct phosphorylation of phosphatidylinositol-4,5-
bisphosphate (PIP2) by phosphoinositide 3-kinase (PI3K) which leads 
to increased levels of phosphatidylinositol-3,4,5-trisphosphate (PIP3). 
AKT translocates to the plasma membrane by binding PIP3 via its PH-
domain, where it can be phosphorylated by PDK1 on Thr308. For full 
activation, AKT requires additional phosphorylation on Ser473 by 
mTOR complex 2. It was shown for Tcells that sustained activation 
of AKT upregulates the surface expression of glucose transporter 
1 (GLUT1) and increases the activity of the rate-limiting glycolytic 
enzyme hexokinase [4,17]. A previous study by McIntyre [18] reported 
that AKT had no effect on glucose uptake in CD8+ T cells. The authors 
of this study suggested that the upstream kinase PDK1 is responsible 
for increased glucose uptake and is therefore dispensable for CD8+ T 
cell metabolism. A study done in our lab came to the same conclusion 
when analyzing glucose uptake. But there was strong evidence that 
AKT is needed for upregulation of lactate dehydrogenase (unpublished 
results). The three major regulating enzymes of glycolysis are hexokinase, 
phosphofructokinase and pyruvate kinase. Although a link between 
AKT and pyruvate kinase was not investigated so far, the observations 
that AKT regulates the activity of hexokinase and phosphofructokinase 
[17] leads to the hypothesis that AKT is responsible for upregulating 
enzymes of glycolysis and lactate production. Additionally PDK1 
or other members of the AGC kinase family can be responsible for 
increased glucose uptake in T cells. Since this contradicts the results 
of previous studies [4,11], the experimental conditions need to be 
critically discussed (Figure 1). The observations on the activating role 
of AKT were mostly performed in primary human T cells stimulated 
with CD3 and CD28, which fully activate AKT. This led to upregulation 
of GLUT1 expression and glucose uptake which could be inhibited by 
addition of cytotoxic T-lymphocyte antigen 4 (CTLA4) [4]. The recent 
studies observing a dispensable role of AKT were done in murine CD8+ 
T cells under physiological conditions using peptide stimulations 
without costimulation. Since it was shown before that CD8+ T cells 
do not require costimulation via CD28 [19] this might also lead to 
different outcomes in metabolic regulation. It was shown before under 
physiological conditions that the activation of AKT is sustained, but 
weak [20]. It might be that under these conditions a weak activation 
of AKT leads to compensatory mechanisms which also induce glucose 

uptake and GLUT1 upregulation. Possible targets of this mechanism 
could be the activation of PDK1 or the activation of the MAP-kinase 
ERK, which was also shown to be responsible for upregulated glucose 
uptake [21].

Another important regulator of cellular metabolism is AMPK, 
which promotes ATP conservation and production through the 
activation of glycolysis, fatty acid oxidation, and the inhibition of 
ATP-consuming pathways, such as protein synthesis, fatty acid 
synthesis, gluconeogenesis, and glycogen synthesis [22,23]. AMPK 
can be activated by an increase in the AMP:ATP ratio followed 
by phosphorylation through LKB1 (a serine/threonine kinase). In 
addition it has been shown that Ca2+-calmodulin-dependent kinase 
kinase 2 (CAMKK2) can activate AMPK independent of AMP levels 
[24]. Recently, it was found that LKB1 is essential for the survival of 
thymocytes and development of T-cell progenitors and is required for 
CD4+ and CD8+ T-cell development [25,26]. LKB1-deficient peripheral 
T cells were shown to have enhanced glucose uptake and a higher 
glycolytic rate [25,26]. This suggests that LKB1/AMPK antagonize the 
PI3K/AKT/mTOR pathway, which promotes anabolism. This could be 
confirmed by the observations that AMPK inhibits mTOR activity [25] 
and that activation of AMPK was shown to be transient upon T cell 
stimulation [24]. Additionally, AMPK was shown to be required for 
memory T cell differentiation. Addition of the drug metformin caused 
an sustained activation of AMPK and subsequently led to increased 
numbers of memory T cells. Recent studies showing that LKB1/AMPK 
influences assymetric cell division in D. melanogaster [27-29], suggest 
that there could be a role for AMPK in the assymetric divisionT cells 
[30]. Since sustained activation of AKT is needed for effector T cell 
differentiation and AMPK activation appears to be only transient 
under these conditions, one could hypothesize that the contact of a T 
cell to an APC could also lead to a polarized distribution of metabolites. 
In this scenario the half of the T cell containing the immunological 
synapse would differentiate into an effector T cell, whereas the distal 
part would lead to memory T cell formation (Figure 2). While this 
hypothesis is attractive, it requires further investigation.

Recently several studies have further analyzed the connection 
between the major metabolic regulators and metabolism. It was 
investigated whether transcription factors like HIF1a (hypoxia 
inducible factor1a) and MYC play an important role in expression of 
metabolic enzymes. Hif1a is a transcription factor that regulates the 
expression of genes that encode for glycolytic enzymes [31] as well as 
downregulates mitochondrial oxygen consumption by blocking the 
entrance of pyruvate into the TCA cycle [32]. Hif1a is constitutely 

Figure 1: Different regulatory functions on AKT and PDK1 on human CD4 and 
murine CD8 T cells. 
GLUT1: Glucose-Transporter 1; HK: Hexokinase; LDH: Lactate dehydrogenase.
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active, but under normoxic conditions, it is rapidly degraded. Under 
low oxygen conditions the degradation of Hif1a is inhibited and it 
translocates to the nucleus where it upregulates glycolytic genes and 
drives the cell towards aerobic glycolysis. A recent study showed that 
the activation of CD4+ and CD8+ T cells leads to a strong, but transient 
induction of HIF1a. However, this activation was not responsible for 
metabolic changes in these cells and was not critical for proliferation 
[33]. In addition, another study observed that HIF1a is strongly 
induced only in the TH17 subset [34]. Another factor investigated was 
the proto-oncogenic transcription factor Myc, which was shown to be 
induced upon T cell stimulation [15]. The deletion of Myc lead to an 
impaired upregulation of glycolysis and glutaminolysis, and a decreased 
activation of targets downstream of mTOR. These observations led to 
the conclusion that Myc is probably the major transcription factor 
regulating T cell metabolism upon activation. Taking together all studies 
on T cell metabolism, it becomes clear that different T cell subsets have 
different metabolic profiles. CD4+ and CD8+ effector cells show strong 
activation of glycolysis and lactate production, mediated via PI3K/AKT 
pathway, which correlates with their ability to proliferate and produce 
cytokines that promote a productive immune response. In contrast, 
both regulatory T cells (Tregs) and memory T cells fail to upregulate 
glucose metabolism [35]. Their demand for glucose is much lower and 
is replaced by using lipids as an energy source through ß-oxidation. 
This is also compatible with their function, as Tregs and memory T 
cells are long-lived cells witha slow rate of replication. 

Summary
Primary T cells are able to upregulate metabolism from a quiescent 

to an activated one in order to maintain their energetic needs for 
proliferation, differentiation, and cytokine production. The PI3K/
AKT pathway plays a central role in regulating T cell metabolism. 
Understanding T cell metabolism provides insight into how T cells 
can deal with their energetic needs and how this may affect their 
function. The ability of T cells to switch between states of low and 
high energy consumption, which then in turn drives them towards 
their specific function, shows the interplay between signalling events 
and the metabolic program. Improving our understanding as to how 
these processes are regulated will not only provide insight in to how 
immune cells function, but it may also reveal targets for suppressing T 
cell-mediated autoimmune diseases or provide tools to improving the 
immune response.
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