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ABSTRACT
Breast, colon and lung carcinomas are classified as aggressive tumors that have poor Relapse-Free Survival (RFS) or 

Progression-Free survival (PF) and poor Hazard Ratios (HRs) despite of extensive therapy. Therefore, it is essential to 

identify a gene expression signature correlating with RFS/PF and HR status to predict the efficiency of treatment. 

RNA Binding Proteins (RBPs) play a critical role in RNA metabolic activities including RNA transcription, 

maturation and posttranslational regulation. However, their particular involvement in cancers is not yet understood. 

In this study, we used computational bioinformatics to classify the function and the correlation of RBPs among solid 

cancers. We aimed to identify the molecular biomarker that would help in disease prognosis prediction or improve 

therapeutic efficiency in treated patients. The intersection analysis summarized more than 1659 RBPs across three 

recently updated RNA databases. The bioinformatics analysis showed that 58 RBPs were common in breast, colon 

and lung cancers with HR values <1 and >1 and a significant Q-value<0.0001. RBP gene clusters were identified 

based on RFS/PF, HR, P-value and fold of induction. In order to define union RBPs, the common genes were 

subjected to hierarchical clustering and classified into two groups. Poor survival with high-risk HR genes included 

CDKN2A, MEX3A, RPL39L and VARS (Valine cytoplasmic-localized Aminoacyl-tRNA Synthetase) and poor 

survival with low-risk HR genes included GSPT1, SNRPE, SSR1 and TIA1, PPARGC1B, EIF4E3 and SMAD9. This 

study may highlight the significant contribution of the 11 RBP genes as prognostic predictors in breast, colon 

and lung cancer patient and their potential application in personalized therapy.
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INTRODUCTION
Cancer is one of the deadliest illnesses globally. According to a
World Health Organization (WHO) report in 2020, 10 million
new cancers are diagnosed globally each year and this number is
expected to rise to 20 million in 17 years. The most common life-

threatening tumors are breast, colorectal, lung, prostate and
stomach tumors and they do not respond well to treatment.

Breast, colon and lung carcinomas are classified as aggressive
tumors that have poor Relapse-Free Survival (RFS) or poor
Progression-Free survival (PF) and poor Hazard Ratios (HRs) in
spite of extensive therapy. Recent report on cancer burden on
member states of the European Union suggest that 4 million of

Journal of Theoretical and
Computational Science Research Article

Correspondence to: Fahad Al-Zoghaibi, Department of Molecular BioMedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 
Saudi Arabia; E-mail: zoghaibi@kfshrc.edu.sa

Received: 20-Mar-2024, Manuscript No. JTCO-24-30276; Editor assigned: 25-Mar-2024, PreQC No. JTCO-24-30276 (PQ); Reviewed: 08-Apr-2024, 
QC No. JTCO-24-30276; Revised: 13-May-2025, Manuscript No. JTCO-24-30276 (R); Published: 20-May-2025, DOI: 10.35248/2376-130X.25.11.242

Citation: Bakheet T, Al-Mutairi N, Doubi M, Al-Ahmadi W, Alhosaini K, Al-Zoghaibi F (2024) Systemic Bioinformatics Computational Analysis of 
Hazard Ratio (HR) Level of RNA-Binding Proteins in Human Breast, Colon and Lung Cancer. J Theor Comput Sci. 11:242.

Copyright: © 2024 Bakheet T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Theor Comput Sci, Vol.11 Iss.2 No:1000242 1



cancer patient and their potential application in personalized 
therapy. Here, we present the correlations of the up and down-
regulation of RBPs in cancer development [10].

MATERIALS AND METHODS

Availability of data

The datasets generated and/or analyzed in this study were 
obtained from three different RNA databases: RBPome (a 
catalogue of 1344 experimentally confirmed RBP genes)
(Supplementary Table 1), census (manually curated RBPs of 
1542 genes) (Supplementary Table 2) and the RBPDB database 
(experimental RBPs with known RNA-binding domains of 416 
genes that were manually curated from the literature)
(Supplementary Table 3) [11].

Union RBP intersection master list and gene
clustering

A total of 3336 genes were obtained and compiled from three 
gene databases including RBPome, census and the RBPDB 
database. The intersection of these genes comprised the RBP 
master list of 1659 genes.

Gene expression microarray datasets of the RBP master list were 
downloaded from Oncomine (www.oncomine.com). The 
analyzed datasets were from breast, colon and lung cancers. Up-
regulated and down-regulated gene expressions of each dataset 
were downloaded with matching criteria of P-value<0.05 and Q-
value<0.001 (Table 1).

Common RBP signatures across breast, colon and lung cancers 
were identified and the data of the union RBP master list 
including the gene expression levels, RFS, PF and P-values for 
each cancer type were compiled from the work of Balazs Gyorffy 
(Supplementary Table 4) then exposed to further filtrations. 
Gene lists were classified based on the value of fold induction:
>1.5 and <-1.5. This was followed by filtration on HR values
greater than 1 and less than 1 along with significant P-
values<0.001. A total of 58 genes were identified across breast,
colon and lung cancers.

Supervised hierarchical clustering visualization was performed in 
JMP® (Version 12, SAS Institute Inc., Cary, NC, 1989-2019) on 
the common RBP genes. The input to the model was up-/down-
regulated RNA data for each cancer. Specifically, the fold change 
of tumor to normal tissues (T/N), HR and the P-value for each 
RBP served as the input to the clustering.

Cancer type Dataset No. of samples No of array genes Portal Platform

Breast
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new cancer cases (excluding non-melanoma skin cancer) and 1.9 
million cancer-related casualties occur each year [1]. The most 
common cause of cancer deaths are lung (0.38 million), 
colorectal (0.25 million) and breast (0.14 million).

Consequently, experts have always argued that research, 
information and awareness are crucial in cancer prevention, 
early detection and strategic decisions on treatment options. 
Global gene analyses confirm the association between genes, 
diseases and drugs [2]. Therefore, it is essential to identify a gene 
expression signature that correlates with RFS or PF and HR 
status to predict treatment efficiency.

Precision medicine is used to assess the epigenetic regulation of 
disease at the molecular level in an individual patient and this 
helps researchers to tailor appropriate and optimal therapies 
that can be used in addition to current therapies or as a 
monotherapy based on each patient's unique omics features, 
maximizing drug efficacy and minimizing adverse drug 
reactions. However, the fragmentation and heterogeneity of the 
available data make it difficult to obtain first-hand information.

Regulation of gene expression is mostly performed by RNA-
Binding Proteins (RBPs), which bind to unique RNA binding 
sites and alter the fate or function of the bound RNAs. Over the 
years, several hundred RBPs have been identified and studied 
for their critical roles in regulating transcriptional and 
posttranscriptional gene expression and their unique 
involvement in cellular processes. RBPs contribute to RNA 
processing in major human diseases including 
neurodegenerative diseases, cancer and muscular atrophies [3-7]. 
However, their particular involvement in cancers is not yet 
understood.

In this study, we used computational bioinformatics to classify 
the correlation between the expression level, survival and the 
HR risk factors of RBPs across solid cancers. We aimed to 
identify the molecular biomarker that would help in disease 
prognosis prediction or improve therapeutic efficiency in 
patients.

A total of 1659 RBP gene summaries were obtained from three 
different RNA databases: RBPome (1344 genes), census (1542 
genes) and RBPDB (416 genes) [8,9]. A total of 58 common RBP 
gene signatures were collected across breast, colon and lung 
cancers. Union RBP gene signatures of 11 genes were defined by 
exposing the common (58) genes to hierarchical clustering with 
RFS, PF, HR, P-value and fold of induction. Based on the results 
of the clustering, four clusters were identified. In these clusters, 
RBPs were classified as poor survival with high-risk HR genes 
(CDKN2A, MEX3A, RPL39L and VARS) and poor survival 
with low-risk HR genes (GSPT1, SNRPE, SSR1 and TIA1, 
PPARGC1B, EIF4E3 and SMAD9).

This study may highlight the significant contribution of the 11 
RBP genes as prognostic predictors in breast, colon and lung
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Table 1: The details list of gene expression microarray datasets downloaded from of Oncomine.



Invasive ductal breast 
carcinoma

TCGA breast 593 20423 Oncomine Not defined

Colon

Colon
adenocarcinoma

TCGA colorectal 237 20423 Oncomine Not defined

Lung

Lung adenocarcinoma Okayama 246 19574 Oncomine Human genome 
U133 Plus 2.0 Array

out to extract only the genes with correlation coefficients, R ≥ 
0.20.

Kaplan-Meier plot

The Kaplan-Meier survival analyses were performed using the 
Kaplan-Meier Plotter (http://kmplot.com/analysis/), a 
comprehensive dataset for survival analysis that includes the 
cross-normalized expression data of 54,675 genes in 4,142 breast 
cancer patients. The database was built from the gene expression 
and survival data from the European Genome-Phenome Archive 
(EGA) and the Gene Expression Omnibus (GEO) repositories. 
Recurrence-free survival was determined using gene cluster 
stratification. Associations between gene expression and patient 
survival were assessed using Kaplan-Meier method (log-rank test, 
GraphPad 6.0) assessed associations between gene expression 
and patient survival. The percentile threshold algorithm (25) was 
used to determine the optimal cutoff of the members of the RBP 
cluster. The jetset best probe set was selected in case multiple 
probe sets measured the same gene to ensure the optimal probe 
set for each gene. HRs and P-values were determined using Cox 
proportional hazards [13].

RESULTS

Union RBP intersection master list and gene
clustering

A total of 3336 genes from three RBP databases were compiled 
and intersected to form the master list, which comprised 1659 
genes identified across breast, colon and lung cancers. The 
layout of the analysis is illustrated in Figure 1.

To segregate the list of common RBP genes, the intersection 
master list of RBPs was further filtered using 50%-fold induction 
or reduction to define the list of up and down-regulated genes of 
each cancer. About 63% of the 514 breast cancer genes were 
classified as up-regulated genes and 37% were down-regulated. 
For colon cancer, 71% of the 637 genes were up-regulated and 
29% were down-regulated. Of the 251 lung cancer genes, 77% 
were up-regulated and 23% were down-regulated.

Bakheet T, et al.

Functional and pathway enrichment analysis of
union RBPs

In order to comprehensively analyze the biological functions of 
union RBPs, we used the Protein Analysis Through 
Evolutionary Relationships (PANTHER) Gene Ontology (GO) 
software website to visualize the biological and molecular 
process and integration of the genes. A pie graph was then 
constructed using Graph Pad Prism 6.

Protein-protein interaction network construction
and interrelation analysis between pathways

STRING version 11 (https://string-db.org) was used to evaluate 
the current interaction networks and experiments on protein-
protein interactions. Then, the interaction networks of these 
proteins were visualized by executing the list of 11 protein 
identifiers in the multiple searches and selecting homo sapiens 
as the organism. The protein network was analyzed to show the 
interactions at the protein level.

RBP cross-correlation

Gene expressions for the 11 genes were downloaded from 
Oncomine, TCGA breast, TCGA colon and Yokohama lung. 
The diseased gene expressions of 389, 102 and 226 for breast 
colon and lung cancer, respectively, were collected and 
multivariate correlation was calculated in SAS Institute Inc. 
2013 (SAS® Enterprise Guide™ 6.1) across multiple genes. The 
correlation values and P-values were input to Graph Pad Prism 
version 6.05 to construct a volcano plot [12].

RBP Co-expression with oncogene/tumor
suppressor genes

A co-expression analysis was performed in oncomine on the 
genes in the curtis breast database, as it is a comprehensive 
database that includes information on many patients. A list of 
correlated genes was downloaded for each gene of interest in 
each cancer. This list was searched for matching Oncogenes 
(OGs) or Tumor Suppressor (TS) genes. The OG database (378 
genes) was downloaded from http://ongene.bioinfo-
minzhao.org/ and the TS database (540 genes) from https://
bioinfo.uth.edu/TSGene/. In order to get statistically significant 
correlations,  the list of  matched OGs and TS genes was filtered
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Figure 1: Study layout shows steps of the union RBPs list
compilation. (A) Master list of 1659 genes was intersected out of
3336 compiled genes from three databases including RBPome,
Census and RBPDB. (B) 58 common RBPs gene signature out
of 1659 genes were segregated across breast, colon and lung
cancers and exposed to further filtration along with HR-values
(>1 and <1) and P-value<0.05 and Q-value<0.001. (C) 11 union
RBPs gene signature was filtered out of 4 hierarchical clusters.

In the microarray gene expression data of the common RBP
gene list, representative HR values and P-values were aligned
(Supplemental Table 1). An HR value>1 was considered high
risk and a HR value<1, was low risk. A total of 58 common

genes were identified for breast, colon and lung cancers. For
each cancer, a set of 58 gene expression values, HR and P-values
were subjected to hierarchical clustering into six clusters (Figure
2 A-C). The six clusters were identified for breast, colon and
lung cancers (Table 2). After clustering each cancer, genes were
in clusters of either good/poor survival or up/down-regulated
genes [14].

Figure 2: Hierarchical clustering heat map graphs. The common 
RBPs signature (58 genes) expression values, HR and p-values 
were subjected to be clustered into 6 clusters for (A) breast 
cancer, (B) colon and (C) lung cancer.

Breast Cluster Count Fold HR P-value

1. 13 -3.0899 0.7487 0.0053

2. 4 -3.0786 1.1749 0.0531

3. 15 1.8787 0.7468 0.0018

4. 7 2.42 1.0572 0.0715

5. 18 2.2835 1.4626 0.000123

6. 1 1.8811 1.06 0.43

Colon 1 8 -3.402 0.675 0.0347

2 12 -3.022 1.6226 0.009

3 5 -2.8213 0.9812 0.3408

4 21 1.9641 0.632 0.0042

5 5 1.7852 0.8115 0.113

6 7 2.4175 1.328 0.0573

Lung 1 11 -2.2714 0.5686 0.000788

Bakheet T, et al.
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Table 2: Union RBP genes clustering: Tables representing the six clusters including the number of genes, gene expression fold change, HR and p-values 
of each cluster across breast, colon and lung cancer.



2 17 1.7615 0.6425 0.0046

3 3 -2.0165 0.8606 0.2137

4 1 1.5968 1.12 0.27

5 2 -2.0638 1.7699 0.00018

6 24 1.9161 1.538 0.0086

Since the study aimed to identify key prognostic predictor genes 
that are associated in terms of survival conditions, HR status 
and gene expression, the first filtration was based on HR values 
followed by gene expressions. Four classes were designed to 
categorize these genes based on their HR values and gene 
expression (Table 3). Class 1 (highest HR values and up-
regulated genes (HR>1 and FI>1.5)), class 2 (highest HR values 
and down-regulated genes (HR>1 and FI<-1.5)), class 3 (lowest 
HR values and up-regulated genes (HR<1 and FI>1.5)) and class 
4 (lowest HR values and down-regulated genes (HR<1 and 
FI<-1.5).

For example, class 1 in the breast cancer cluster represented in 
cluster 5 contains 18 genes with average FI and HR values of 
2.2835 and 1.4626, respectively and a P-value<0.001. Similarly, 
in colon cancer, cluster 6 contains 7 genes with average FI and 
HR values of 22.4175 and 1.3280, respectively and a P-value ~ 
0.05 and lung cancer cluster 6 contains 24 genes with average FI 
and HR values of 1.9161 and 1.5380, respectively and a 
P-value<0.01 [15].

Upregulated Breast/Colon/Lung (FI>1.5) Downregulated Breast/Colon/Lung (FI<-1.5)

High risk (HR>1) Class 1 Class 3

MEX3A NA

CDKN2A

RPL39L

VARS

Low risk (HR<1) Class 2 Class 4

GSPT1 PPARGC1B

SNRPE EIF4E3

SSR1 SMAD9

TIA1

mean expression levels of each gene across the three types of 
cancers and their HR values and consensus targets are shown in 
Table 4 [16].
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In class 1, CDKN2A, MEX3A, RPL39L and VARS had HRs>1 
and FIs>1.5. Class 2 also had common genes (GSPT1, SNRPE, 
SSR1 and TIA1) with HRs<1 and FIs>1.5. Class 3 had no 
common genes with HRs>1 and high FIs<-1.5. Class 4 had 
common genes (PPARGC1B, EIF4E3 and SMAD9) with HRs<1 
and FIs<-1.5. Therefore, the following 11 genes were compiled 
from four classes: MEX3A, CDKN2A, RPL39L, VARS, GSPT1, 
SNRPE, SSR1, TIA1, PPARGC1B, EIF4E3 and SMAD9. The
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Table 3: The union RBP genes class contributions: Class 1 shows genes with criteria of HR-value>1 and FI>1.5. Class 2 shows genes 
with criteria of HR-value<1 and FI>1.5. Class 3 shows genes with criteria of HR-value>1 and FI<1.5. Class 4 shows genes with criteria 
of HR-value<1 and FI<-1.5.



Average fold induction 
breast, colon and lung

Average HR-value breast, 
colon and lung

Consensus target Function

CDKN2A 2.967172 1.36098 unknown TS that encoding p14 and
p16 which are involved in
different cellular processes

MEX3A 3.228625 1.500737 mRNA Putative RBP involve in 
polarity and stremness that 
contributes with cellular 
homeostasis and 
carcinogenesis

RPL39L 1.889479 1.49 ribosome Ribosomal protein paralogs
that are involved in gene
translations

VARS 1.594438 1.318373 tRNA Charging and catalyzing the
bond between tRNA and
designated amino acid

GSPT1 1.717739 0.613333 mRNA Termination of protein
translation

SNRPE 1.809188 0.686667 snRNA Cellular splicesome
complex that involve in
mRNA maturation process

SSR1 1.674405 0.683333 unknown Proteins-specific
transportation across ER
membrane

TIA1 1.636625 0.66 mRNA Consider as a TS that
involved in controlling the
translation and co-
localization of target genes
in SGs

PPARGC1B -2.50662 0.6805 unknown unknown

EIF4E3 -2.99672 0.605903 mRNA Play essentials roles in
initiation the protein
translation that are involved
in mRNA metabolism

SMAD9 -2.42747 0.663987 putative miRNA Belong to receptor SMAD
protein complex, binds to
DNA in process of
suppressing of target gene
transcription

unknown consensus targets in the union RBPs compared to the
master RBP list. This may explain the diversity of consensus
domains; therefore, there are no specific consensus targets for
the RBPs that are involved in cancer development or therapy
rejection.

To determine the molecular and biological function and
mechanisms of the union RBP gene signatures, we used the
PANTHER GO unifying biology analysis and STRING11
software.

Bakheet T, et al.

The functional analysis of the Union RBP
consensus targets and the suggested protein-protein
network interactions

A pie chart was used to visualize the consensus targets of the 
master RBPs and the gene signatures of the union RBPs in 
human cells (Figure 3A and B). Interestingly, there were 
increases in the mRNA, tRNA, snRNA and ncRNA consensus 
targets in the union RBPs compared to the master RBP list. 
However, there was a reduction in rRNA percentages and
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Table 4: The mean expression levels of union RBP genes across the three type of cancers along their HR values and their consensus targets.



Figure 3: Functional analysis in human cells: (A) Pie chart
representing the consensus targets of the RBPs master genes. (B)
Pie chart representing the domain consensus of the union RBP
genes list. (C) The union RBP genes functional classifications
including molecular, biological process and cellular component.
(D) Network representing the current protein-protein interaction
of the union RBP genes.

RBP genes on the x-axis and the base 10 logarithm of their 
corresponding P-values on the y-axis. P-values<0.00001 were 
considered and reported as base 10 logarithms (P-value of 
0.00001=4).

In colon cancer and most probably because of the lack of data, 
the cross-correlation identified only three correlating groups 
(EIF4E3/MEX3A, SSR1/RPL39L and PPARGC1B/CDKN2A). 
The cross-correlation of EIF4E3/MEX3A was defined in breast 
and lung cancer. The cross-correlation of SSR1/RPL39L was 
found only in colon and lung cancer and the cross-correlation of 
PPARGC1B/CDKN2A was found only in colon and breast 
cancer (Figure 4 A-C) [18].

Figure 4: Cross correlations between the union RBP genes 
signature across multiple genes were determined for; (A) Breast,
(B) Colon and (D) Lung cancer. Volcano plot is shown by 
plotting the R-values on the x-axis and their significance P-values 
as corresponding –Log10 (p-values) on the y-axis.

Survival analysis

The main aim of this study was to identify the survival-
associated factors of cancer treatment plans with the gene
expression of union RBPs. Therefore, we extracted the union
RBPs that matched the representative treated patient data as
explained above from the list of common RBPs in order to
assess the prognostic value of the gene signatures of the 11
RBPs. The gene expression of the union RBPs of each cancer
was divided into three subgroups (up-/down-regulated genes, up-
regulated genes and down-regulated genes). The RFS or PF of
each subgroup for each cancer type was then examined using the
Kaplan-Meier estimation method and the log-rank test to assess
the significant differences of the two-group survival curves. In all
RBP gene signature subgroups, patients with up-regulated gene
expression had significantly lower survival rates than patients
with down-regulated gene expression. This indicated poor
survival rates in patients who were treated for high-risk breast
cancer (HR=1.4, CI=1.2–1.67, P=.2e-05), colon cancer
(HR=1.34, CI=1.05–1.7, P=0.017) and lung cancer (HR=0.6,
CI=0.45-0.8, P=0.00045) (Figure 5 A, D and G). In order to
interpret the correlation between the gene expression levels of
the union RBPs and the survival prognosis in breast, colon and
lung cancers, the up-regulated and down-regulated gene clusters
were used [19].

Bakheet T, et al.

Three functional classifications were defined in panther: 
Molecular, biological and cellular processes. Binding indirect 
targets, catalytic activity and transduction regulator activity 
enhanced the molecular function of the union RBPs. In the 
biological process, 50% of the RBPs were involved in metabolic 
processes, and 41% were found in the cytoplasmic compartment 
(Figure 3C). Union genes were input to STRING11 to analyze 
possible interactions between the network and experimental 
protein-protein interactions in order to better visualize and 
understand the functions of the union RBPs. Molecular 
functions have shown that they can bind to several RNAs, 
heterocyclic compounds, organic, cyclic compounds and 
translation factors. In the biological process, there was mainly an 
improvement in the regulation of translation, the biosynthesis of 
cellular nitrogen compounds and macromolecules, gene 
expression and peptide metabolism. Cellular component 
cytoplasmic and ribonucleic protein and protein-containing 
complex [17].

Moreover, the union RBPs obtained 11 PPI nodes, 5 edges, and 
a PPI enrichment P-value <0.019. In addition, different tandem 
affinity purification assays, co-immunoprecipitation assays, yeast 
two-hybrid assays and affinity chromatography assays 
demonstrated the affinity protein-protein interactions in two 
main clusters. The first cluster consisted of five genes: 
CDKN2A, GSPT1, SSR1, RPL39L and VARS. The second 
cluster demonstrated protein interactions between TIA1, 
SNRPE and others. MEX3A, SMAD9, PPARGC1B and EIF4E3 
were not involved in the protein network interactions (Figure 
3D).

Cross-correlation of RBPs

The expression of 11 genes was obtained from the oncomine 
database to identify the potential cross-correlation between the 
RBP gene signatures. The multivariate similarity was calculated 
in SAS Institute Inc. 2013 SAS® Enterprise Guide TM 6.1 
across multiple genes. A volcano plot was obtained by plotting 
the R-values of the common 58 up-regulated and down-regulated
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Figure 5: Kaplan-Meier plot representing Relapse-Free Survival 
(RFS) of breast and colon and Progression-Free survival (PF) of 
Lung patient across the union RBP genes signature subgroups:
(A, D and G) Representing all up and down-regulated genes, (B, 
E and H) Representing the up-regulated genes and (C, F and I) 
Representing down-regulated genes across breast, colon and lung 
respectively.

expression is a functional and effective prognostic tool for clear 
cell Renal Cell Carcinoma (ccRCC) that can add prognostic 
value to the staging system.

Survival and HR analyses are clinical and biostatistical methods 
used to assess the efficiency of treatment in patient groups. Our 
study focused on identifying the survival-associated risk factors 
and the gene signatures of common RBPs across the most 
common cancers: Breast, colon and lung cancers. We developed 
a statistical bioinformatics analysis method based on gene 
expression, RFS, PF, HR and P-values in the data of treated 
patients [20].

The union RBP gene signatures were classified into two 
subgroups (overexpression and underexpression) and each 
subgroup was further divided into genes with poor survival and 
low-risk HRs and those with poor survival and high-risk HRs. 
Interestingly, most of the down-regulated genes including 
PPARGC1B, EIF4E3 and SMAD9 were classified as poor 
survival with low risk. However, the up-regulated genes were 
divided into two subgroups: The poor survival with low risk 
genes (GSPT1, SNRPE, SSR1 and TIA1) and the poor survival 
with high risk genes (CDKN2A, MEX3A, RPL39L and VARS)
(Table 4). Moreover, these genes play diverse roles in mRNA 
metabolism and the roles of most of these genes in cancer have 
not yet been identified.

Based on predicted and experimental STRING data, we 
identified two signaling pathway relation clusters and non-
signaling pathway-related genes of the union RBP gene 
signatures. The first signaling pathway relation cluster of union 
RBPs comprised of CDKN2A, GSPT1, SSR1, RPL39L and VARS. 
These genes interacted and were colocated and overexpressed in 
cancer patients. Surprisingly, in this cluster, there were 
discrepancies between the cellular function, expression correlations, 
survival-associated RISK factors and HRs of genes. For instance, 
the overexpression of CDKN2A, RPL39L and VARS 
overexpression were associated with poor survival and high risk. 
However, GSPT1 and SSR1 were associated with poor survival 
and low risk. This may elucidate the competition relation in end 
gene function.

CDKN2A is a TS gene that encodes the p14 and p16 proteins 
and is involved in different cellular processes. It had high fold 
induction and was associated with poor survival and high risk 
HR in breast, colon and lung cancer dataset analyses. According 
to previous studies, the encoded protein level of CDKN2A is 
almost undetectable. However, it has the dual role of blocking 
tumor development and cell proliferation and in the oncogenic 
condition, its level increases and stimulates p53-dependent 
and/or independent pathways. According to STRING software 
analysis, CDKN2A binds directly to GSPT1 (Figure 3D). Based 
on Curtis analysis, CDKN2A had an 11.4% correlation with 
OGs and only a 4.0% correlation with TS genes (Table 5). 
CDKN2A may perform its dual function by controlling the 
expression or suppression of OGs and TSs.

RPL39L is a ribosomal protein paralog that is abundantly 
expressed in cancer and embryonic stem cells. Recently, 2D gel 
and proteomics analyses have suggested that RPL39L and other 
RPs are  involved in gene translation [14]. The  hypo-methylation
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In the up-regulated RBP subgroup, patients with up-regulated 
gene expression had significantly lower survival rates than 
patients with down-regulated gene expression. This indicated 
poor survival rates in patients who were treated for high-risk 
breast cancer (HR=1.37, CI=1.16–1.61, P=0.00022), colon 
cancer (HR=1.45, CI=1.12–1.87, P=0.004) and lung cancer 
(HR=0.42, CI=0.3-0.6, P=6.6e-07) (Figure 5 B, E and H). 
However, in the down-regulated RBP subgroup, patients with 
down-regulated gene expressions had significantly lower survival 
rates than patients with up-regulated gene expressions. This 
indicated poor survival rates in patients who were treated for 
low-risk breast cancer (HR=0.56, CI=0.56–0.77, P=2.2e-07), 
colon cancer (HR=0.6, CI=0.44–0.82, P=0.001) and lung cancer 
(HR=0.56, CI=0.43-0.74, P=2.3e-05) (Figure 5 C, F and I).

Hence, the up-regulation of CDKN2A, MEX3A, RPL39L and 
VARS in breast, colon and lung cancer patients indicated poor 
survival with high risks and inefficient treatment plans. 
However, the up-regulation of GSTP1, SNRPE, SSR1 and TIA1 
and the down-regulation of PPARGC1B, EIF4E3 and SMAD9 
in breast, colon and lung cancer patients indicated poor survival 
with low risks and efficient treatment plans.

DISCUSSION
With the introduction of genomic profiling data and selective 
molecular-targeted approaches to identify effective therapeutic 
alternatives, biomarkers have become increasingly important 
targets in cancer patients clinical diagnosis and treatment. Single 
gene/protein or multi-gene signature-based assays have been 
developed to test particular molecular pathway deregulations 
that direct therapeutic decision-making as predictive biomarkers. 
For example, the six-gene signature for survival prediction in 
patients with glioblastoma can be used in personalized therapy 
and promoting drug efficiency. Gene expression and 
computational analysis can be used in adjuvant therapy and 
gene profiling of non-small cell lung cancer patients at high risk 
of relapse. In addition, the effect of CpG-methylation on gene
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of cancer-specific CpG Islands (CGIs) and RPL39L reactivation
is important for the treatment and risk stratification of lung
adenocarcinoma. Based on Curtis analysis, 0.26% correlation
with OGs and 4.26% with TS genes, which points to its role in
TS gene expression levels with a strong correlation coefficient, R
(0.2–4.26) (Table 5).

VARS is one of the 37 Aminoacyl-Trna Synthetases (ARSs).
VARS and ARSs mainly charge the tRNA and catalyze the bond
between the tRNA and the designated amino acid. VARS
mutations are associated with a loss of enzymatic activity and the
development of a spectrum of global developmental delays,
epileptic encephalopathy and primary or progressive
microcephaly [15]. According to our analysis, VARS binds to the
GST c-terminal of the target gene (Table 5). In curtis, VARS had
a 2.4% correlation with OGs and a 0.74% correlation with TS
genes (Table 5). The expression level of VARS in cancer patients
and the high correlation coefficient, R (0.2–0.48), with OGs in
contrast to the correlation coefficient, R, of 0.2–0.3 with TS
genes, may explain the critical role of this gene in catalyzing the
bond between the tRNA and amino acid to translate recovery
proteins in the treated cancer cells. This mechanism requires
further investigation.

In eukaryotic cells, the stable G1 to S phase transition protein/
eukaryotic Release Factor (eRF1) (GSPT1/eRF3a) complex is 
involved in translation termination. GSPT1 depletion causes 
cell cycle arrest at the G1 phase via inhibition of the mTOR 
pathway. There is a statistically significant relationship between 
rs4561483 risk genotype and increased GSPT1 expression in 
Testicular Germ Cell Tumors (TGCT). Nicotine and EGF 
induce genes, including GSPT1, to promote the proliferation, 
invasion and migration of non-small cell lung cancers, thus 
enhancing its tumorigenic activity and revealing the central role 
of the inhibitor of DNA binding/differentiation 1 (ID1) and its 
downstream targets in facilitating lung cancer progression [16]. 
In this study, the overexpression of GSPT1 in treated cancer 
patients was associated with poor survival and low-risk HRs 
(Table 4). Using curtis, there was a 2.4% correlation with OGs 
and a 3.9% correlation with TSs (Table 5).

Symbol Descriptions Motif Binding site STRING: PPI 
with elavl/TTP

% ONCO 
correlation

% TS correlation

CDKN2A Cyclin dependent
kinase inhibitor 2A

unknown N/A none 11.37 4.07%

MEX3A RNA-binding
protein MEX3A

AURICH motif KHx2;
Znf_CCCHx1

none ** **

RPL39L Ribosomal protein
L39 like

unknown N/A none 0.26 4.26

VARS Valine-tRNA ligase,
Aminoacyl tRNA
synthetases, class 1

unknown GST c-terminal none 2.38 0.74

GSPT1 Eukaryotic peptide
chain release factor
GTP-binding
subunit ERF3A

AURICH motif N/A none 2.38 3.89

SNRPE Small nuclear 
ribonucleoprotein
E

unknown LSmx1 elavl ** **

SSR1 Translocon 
associated protein 
subunit alpha

AURICH motif N/A none 6.61 7.04

TIA1 Nucleolysin TlA-1
isoform p40

AURICH motif UUUUUGU/
RRMX3

elavl 8.99 6.11

PPARGC1B Peroxisome
proliferator-
activated receptor 
gamma coactivator
1-beta

AURICH motif RRMx1 none ** **
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Table 5: Union RBP genes summary; binding site, AU-rich and correlation to oncogenes and tumor suppression genes.



EIF4E3 Karyotic
translation
initiation factor 4E
type 3

AURICH motif N/A none 7.14 8.15

SMAD9 Mothers against 
decapentaplegic
homolog 9

AURICH motif N/A none ** **

lung (adenocarcinoma) prognosis and pathogenesis. Its 
expression level and role in cell proliferation and invasion in 
treated cancer patients explain its association with poor survival 
and low-risk HR. This study found a potential protein-protein 
interaction between SNRPE and Elavl1/HuR was found, but 
this requires more experimental investigation (Table 5).

The non-signaling pathway-relation genes included MEX3A, 
PPARGC1B, EIF4E3 and SMAD9. These genes were all 
associated with poor survival and low-risk HR except MEX3A, 
which was associated with poor survival and high-risk HR. 
MEX3A is a putative RBP that regulates CDX2 levels and plays a 
key role in intestinal differentiation, polarity and stemness 
contributing to cellular homeostasis and carcinogenesis [13]. 
MEX3A reverses the effects of chemotherapy and irradiation by 
regenerating the damaged crypts. This may explain why MEX3A 
levels are high in treated patients compared to untreated 
patients and why treated patients have low-risk HR when 
undergo this type of treatment. MEX3A contains an AU-rich 
motif at the UTR site, and it binds to KHx2, znf and CCCHx1 
binding sites of target genes.

The peroxisome Proliferator-activated receptor Gamma Co-
Activator 1 Beta (PGC1B) is encoded by the PPARGC1B gene. 
AMP-activated kinase promotes aberrant PGC1B expression in 
human colon cancer cells. PGC1A and PGC1B methylation are 
early cancer risk biomarkers; it recognizes the RRMK1 binding 
site motif. Here, we showed a correlation between the 
downregulation of PGC1B and poor survival associated with a 
low risk of death and cancer relapse (Table 5). Further 
investigation is needed.

Eukaryotic translation Initiation Factor 4E type 3 (EIF4E3) 
belongs to the EIF4E protein family, which comprises EIF4E 1, 
2 and 3. They play essential roles in the initiation of protein 
translation that occurs in mRNA metabolism, proliferation, 
survival, invasion and metastases. In particular, EIF4E3 binds to 
the positively charged m7G cap to compete with other factors 
and function as TS. The reduction of EIF4E3 in high EIF4E 
cancers suggests that EIF4E3 is a clinically relevant inhibitory 
mechanism lacking in some malignancies. In parallel survival 
analysis in breast cancer patients, the overexpression of certain 
genes, including EIF4E3, improved survival rates. In fact, the 
phosphorylation of EIF4E1 has been implicated in the initiation 
of oncogenic mRNA translation. Enhanced EIF4E3 expression 
competes with EIF4E1 and suppresses EIF4E1-driven 
translation, which reveals a novel role of EIF4E3 in translation 
imitation biology [19]. This study showed a 7.0% correlation 
with OGs and an 8.0% correlation with TSs. This correlation 
competition could explain the dual role of EIF4E3 in
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Signal-Sequence Receptor 1 (SSR1) is part of an SSR complex 
known as the Translocon-Associated Protein Complex (TRAP). 
SSR1 or the TRAP-α subunit is one of four TRAP subunits. The 
primary function of TRAP is protein-specific transportation 
across the Endoplasmic Reticulum (ER) membrane. The 
overexpression of SSR1 in treated cancers may lead to the 
release of the translated genes through the ER rather than to 
their final destinations, where they would usually play specific 
roles. TRAP had a 6.6% correlation with OGs and a 7.0%
correlation with TSs, which could be the target genes for SSR1. 
SSR1 controls these TSs by accumulating them in the ER under 
certain pathological and/or physiological conditions (Table 5). 
The discrepancy between the genes cellular function, expression 
correlations, survival-associated factors and HRs necessitates 
further studies to understand the cross-functional correlation.

The second signaling pathway relation cluster of the union 
RBPs was composed of T-cell Intracellular Antigen 1 (TIA1) and 
Small Nuclear Ribonuclear Protein Polypeptide E (SNRPE). 
Both were associated with poor survival and low-risk HRs. The 
network represented the binding of TIA1 with the SNRP family, 
showing the critical function of TIA1 in the complex formation 
of the SNRP family. TIA1 is an RNA-binding protein that is 
considered to be TS and is involved in carcinogenesis. MiR-19a 
is involved in the destabilization of TIA1 mRNA by binding 
directly to the 3’UTR of TIA1 mRNA. It controls the 
translation of the target genes by binding and colocating those 
genes into the Stress Granules (SGs). DNA damage leads to the 
release of p53 from SGs due to the dissociation of TIA1. TIA1 
mutation is implicated in the delay of SG disassembly and the 
accumulation of non-dynamic SGs and it is involved in 
neurodegenerative diseases, such as Amyotrophic Lateral 
Sclerosis (ALS). TIA1 is also directly involved in the tau 
oligomer-mediated pathway. TIA1 reduces the number and size 
of SGs, protecting against neurodegeneration and prolonging 
the survival of transgenic O301S tau mice and tau oligomer 
aggregation [18]. It is AU-Rich at the UTR site and has the 
potential to interact with Elavl1/HuR. It also recognizes the 
UUUUUGUl RRMX3 binding site motifs. It has a 9.0%
correlation with OGs and a 6.11% correlation with TGs (Table 
5).

SNRPE is part of a cellular spliceosome complex and plays a 
critical role in mRNA maturation. The down-regulation of 
SNRPE is implicated in the dramatic reduction in mTOR 
mRNA and protein levels and the induction of autophagy. It 
also plays a role in cell proliferation in prostatic cancers, which 
indicates its oncogenic effects. It directly regulates the Androgen 
Receptor (AR) and this explains its involvement in cellular 
proliferation [17]. SNRPE overexpression is also associated with
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their functions and contribution to cancer development and 
drug resistance and the influence of ethnicity, gender and 
epigenetic diversity on drug efficiency.

CONCLUSION
In conclusion, the results illustrate that our extended subtyping 
framework, by combining subtyping and subtype-specific 
biomarkers, may lead to improved patient prognostication, may 
form a strong basis for future studies and could potentially be 
applied as a personalized diagnostic test panel for routine 
laboratory tests.
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