

Review Article

Synthesis of New Halogen-Containing Norbornene Adducts Based on N-Substituted Imides of 2,3-Dichlorbicyclo [2.2.1] Hept-5-ene-2,3-Dicarboxylic Acids and Hexachlorocyclopentadiene

Yaqub Nagiyev*

Nagiyev Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

*Corresponding author: Nagiyev Y, Nagiyev Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, Tel: (+99)4505185161; E-mail: yaqub56@mail.ru

Received date: June 22, 2017; Accepted date: May 14, 2018; Published date: May 18, 2018

Copyright: © 2018 Nagiyev Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Diene condensation of N-substituted 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid imides with hexachlorocyclopentadiene proceeds regioselectively through the double bond of dienophile, resulting in the corresponding polychlorinatedcyclic adducts with endo configuration.

Keywords: Double bond; Functional groups; Organic compounds

Introduction

Polychlorocyclic compounds containing functional groups in the side chain have a variety of biological and physiological effects [1-10], are used as flame retardants to increase the fire resistance of polymeric materials [4,10], are of interest as synthones in the purposeful synthesis of many classes of organic and element organic compounds [11-14].

The availability of norbornene derivatives has increased as a result of the improvement of the Diels-Alder reactions and due to the preparation of cyclopentadiene, 1,3-cyclohexadiene and hexachlorocyclopentadiene on their basis.

Previously, we investigated the diene condensation of N-substituted imidates of dichloromaleic acid with cyclopentadiene and 1,3-cyclohexadiene, leading to the formation of bicyclic adducts. The structure and properties of the synthesized compounds were studied, as well as certain patterns of reactions [15-20].

The N-substituted imidases of 2,3-dichlorobicyclo [2.2.1] hept-5ene-2,3-dicarboxylic acid contains reactive groups that make it possible to obtain on their basis a variety of valuable products of fine organic synthesis. In this work, studies are continued in this direction and the results of studying the diene condensation of N-substituted imides of 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid and hexachlorocyclopentadiene [21]. The reactions were carried out at a molar ratio of the reacting components (diene: dienophile=1:1) (Schemes 1 and 2).

Scheme 1: R=Ph (a), m-NO₂C₆H₅ (b), p-NO₂C₆H₅ (c), 2.4-(NO₂)₂C₆H₄ (g), p-ClC₆H₅ (d), M-ClC₆H₅ (e), 3.4-Cl₂C₆H₄ (x), 2.5-Cl₂C₆H₄ (s).

Scheme 2: R=Ph (a), m-NO₂C₆H₅ (b), p-NO₂C₆H₅ (c), 2.4-(NO₂)₂C₆H₄ (g), p-ClC₆H₅ (d), M-ClC₆H₅ (e), 3.4-Cl₂C₆H₄ (g), 2.5-Cl₂C₆H₄ (s).

The composition and structure of the synthesized products were confirmed by IR, ¹H NMR spectroscopy and elemental analysis data. The compounds 7 (a-x) obtained are solid crystalline substances. The reactions were carried out at 110-120°C for 8-10 h at a 1: 1 dienedienophile mole ratio. Under similar conditions, the reaction of [4+2]cycloaddition of hexachlorocyclopentadiene to other substituted 2,3dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid imides 5 (b-g) was carried out. The yield of adducts 7 (a-x) varies within the limits of 78-97%, with the highest yield observed for compound 7 b (97%), and the lowest yield for N-(m-Chlorophenyl) imide endo exo-1,2,3,4,7,8,11,11-octachlorotetracyclo [6.2.1.1.05,10]-decene-2ene-7.8-dicarboxylic acid (e).

In the IR spectrum of the adduct 7 (a-e), vibrational bands of the substituted benzene ring at 1630-1536; 1790-1730 (C=O), 745-735 cm⁻¹ (C-Cl) are observed, as well as bands of valence and deformation of the C-H bond vibration (3000, 1440 cm⁻¹). The absorption bands in the region 2950-2880 [δ (=CH)] and 960-820 [δ (C-H)] indicate the presence of a strained double bond in the molecules. In the ¹H NMR spectrum of imide 6 (a-b), the protons of the six-membered cycle of the norbornene fragment form a spin system AAAXX¹, in which A and A^1 are protons H1.4, (δ 2.81 md), and HK¹ protons H 5.6 δ 5.61 md. Bridged methylene protons are not equivalent and represent the spectrum of the system AB with δ (HA) 1.35, δ (HB) 2.22 ppm. 2 JAB 9.6 Hz. Each component of the spectrum AB has an additional fine structure due to the spin-spin interaction of the bridge protons with protons H 1.4-6. In the low-field region (6.54 and 7.41 ppm), the spectrum contains multiple resonance signals corresponding to the five-spin AAABB1C system of aromatic protons.

Citation: Nagiyev Y (2018) Synthesis of New Halogen-Containing Norbornene Adducts Based on N-Substituted Imides of 2,3-Dichlorbicyclo [2.2.1] Hept-5-ene-2,3-Dicarboxylic Acids and Hexachlorocyclopentadiene. Organic Chem Curr Res 7: 190. doi: 10.4172/2161-0401.1000190

Page 2 of 3

The resulting heterocyclic compounds are crystalline substances. The chemical composition and structure of N-phenylimide-endoexo-1,2,3,4,7,8,11,11-octachlorotetracyclo [6.2.1.1.05,10] -dodec-2ene-7.8-dicarboxylic acid are established by elemental analysis and methods of PMR, IR spectroscopy, as well as X-ray diffraction analysis (7a). It has been found that the product 7a obtained has an endoconfiguration.

Experimental part

N-Phenylimide-endo-exo-1,2,3,4,7,8,11,11-octachlorotetracyclo

[6.2.1.1.05,10]-dodec-2-ene-7.8-dicarboxylic acid (a). A solution of 0.546 g (2 mmol) hexachlorocyclopentadiene in 5 ml of toluene was added dropwise to a solution of 0.616 g (2 mmol) of the adduct (7a) in 15 ml of toluene at 1100°C for 15 minutes. The reaction mixture was stirred for 10 hours at the boiling point of toluene. The mass was then cooled to 100°C, the precipitate was filtered off, washed with water, and dried in vacuo at 700°C. The yield is 1.05 g (90%). Cinnamon crystals, well soluble in benzene, toluene, acetone, chloroform, DMF, N-methylpyrrolidone, m.p. 178-180°C. IR spectrum, n cm⁻¹; 3000-1442 (C-H); 2882, 2742 (=N-); 1632.1638 (C₆H₄); 1382.1212 (SON); 682 (C-Cl). Nuclear Magnetic Resonance Spectrum ¹H, δ ppm. 7.31 (Ph); 2.89 (2H6.9); 2.20 and 1.26 (2H2). Found: C, 41.29; H 1.85; Cl 48.91; N 2.45. C₂₀H₁₁Cl₈NO₂. Calculated, % C, 41.31; H, 1.89; Cl, 48.88; N, 2.41.

 $\begin{array}{lll} N-(2,4-Dinitrophenyl) & imido-endo-exo-1,2,3,4,7,8,11,11-\\ octachlorotetracyclo & [6.2.1.1.05,10] & -decene-2-ene-7.8-dicarboxylic \\ acid (g). Yield 1.21 g (90%) m.p. 196-198°C. IR spectrum, n cm^{-1}; \\ 1748.1831 (CO), 1114.1385 (C-N); 1122.1144 (NO), 737 (C-Cl). 1 H, \delta \\ ppm. 7.43, 6.56 (Ph); 2.87 (2H6.9); 2.19 and 1.25 (2H2). Found: C, \\ 35.67; H, 1.36. \end{array}$

 N-(m-Chlorophenyl)
 imide
 endo-exo-1,2,3,4,7,8,11,11

 octachlorotetracyclo
 [6.2.1.1.05,10]
 -dodec-2-ene-7.8-dicarboxylic

 acid, Acid (e). Yield 1.07 g (92%) m.p. 166-168°C. IR spectrum, n cm⁻¹;
 1750-1707 (C=O), 1334 (=N-), 835 (C₆H₄), 735 (C-Cl). 1 H, δ ppm.

 6.91 (Ph); 2.84 (2H6.9), 1.93 and 1.52 (2H₂). Found: C, 38.91; H, 1.62;

Cl, 51.94; N, 2.29. $C_{20}H_{10}Cl_9NO_2$. Calculated, % C 38.99; H 1.61; Cl, 51.91; N, 2.27.

N-(2,5-Dichlorophenyl) imide endo-exo-1,2,3,4,7,8,11,11 octachlorotetracyclo [6.2.1.1.05,10] -decene-2-ene-7.8-dicarboxylic acid (G). Yield 1.24 g (95%) m.p. 145-147°C. IR spectrum, n cm⁻¹; 1753-1705 (C=O), 1342 (=N-), 839 (C₆H₄), 735 (C-Cl). 1 H, δ ppm. 6.90 (Ph); 2.82 (2H6.9), 1.92 and 1.50 (2H₂). Found: C, 37.31; H, 1.37; Cl, 54.22; N, 2.19. C₂₀H₉Cl₁₀NO₂. Calculated, % C, 37.21; H, 1.40; Cl, 54.26; N, 2.17.

The IR spectra were recorded on a Nikolet IS10 spectrophotometer in KBr Thermo Scientific USA. ¹H NMR spectra were recorded on a Tesla BS-484 (80MHz) spectrometer in (CD_3)₂CO, the internal standard was TMS. Initial reagents and solvents were prepared according to the methods described [22].

Conclusion

Diene condensation of N-substituted imides of 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid with hexachlorocyclopentadiene proceeds regioselectively over double bond of dienophile.

The resulting polychlorinated bicyclic adducts have an endoconfiguration.

The reaction of hexachlorocyclopentadiene with N-substituted 2,3dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid imides proceeds according to a classical type of diene condensation "dieneacceptor, dienophile-donor".

The X-ray diffraction analysis has shown that the obtained product has endo-configuration.

A crystalline structure of the resulting heterocyclic compounds has been established.

References

- 1. Chinchella R, Farvello RL, Galindo N, Najera C (1999) Asymmetric synthesis of bicyclic α -amino acids by a Diels-Alder reaction to a new chiral α , β -didehydroalanine derivative. Tetrahedron: Asymmetry 10: 821-825.
- Tarabara IN, Kasyan AO, Krischik OV, Shishkina SV, Kasyan LI (2002) Synthesis, Structure, and Transformations of New Endic Anhydride Derivatives. Russ J Org Chem 38: 1299-1308.
- 3. Nagiyev YM (2005) The synthesis of mono and bicyclo biological active compounds on the base of β -aminoisobuyronitrile. Azerb Chem J 3: 58-65.
- Zefirov NS, Shestakova TF, Kirpichenok MA (1985) Khimiya qeksakhlortsiklopentadienai rodstvennykh soedinenii. Chemistry of Hexachlorocyclopentadiene and Related Compounds. Moscow: Mosk Gos Univ, p. 212.
- 5. Akhundov VY, Guseinov MI, Veliev MG (1984) Antibacterial activity of new polychlorbicyclic compounds of acetylene series and the possibility of their use in medicine. Dokl AS of the Azerb SSR 9: 74-77.

Citation: Nagiyev Y (2018) Synthesis of New Halogen-Containing Norbornene Adducts Based on N-Substituted Imides of 2,3-Dichlorbicyclo [2.2.1] Hept-5-ene-2,3-Dicarboxylic Acids and Hexachlorocyclopentadiene. Organic Chem Curr Res 7: 190. doi: 10.4172/2161-0401.1000190

Page 3 of 3

- Mamedov EG, Ayubov IG (2006) Asymmetric diene synthesis of derivatives of norbornene based on cyclopentadiene. Azerb Chem J 4: 52-66.
- Mamedbeili EG, Kyazimova TG, Nagiev ZM, Abdiev OB, Aliev KA (2009) Synthesis of para-substituted bicyclo [2.2.1] hept-5-en-2-ylmethyl benzoates. Russ J Org Chem 45: 74-77.
- Aqaev NM, Smorodin AE, Veliev MG (1985) Investigation of bactericidal properties of bicyclic adducts of diene synthesis. NTIS Series Oilfield business and oil transportation. M: Vniioeng 2: 48-52.
- Smorodin AE, Aqaev NM, Quseinov MM (1983) Suppression of sulfatereducing bacteria by cyclic compounds of the acetylene series. Protection of Metals 3: 471-473.
- Motsarev GV (1981) Some Directions for the Synthesis of Halogen-Containing Monomers. Chem Ind 8: 465-467.
- 11. Veliev MG, Ishchenko NY, Chalabieva AZ (2007) Study of the modifying properties of some epoxy compounds of the acetylene series. Plastich Massy 10: 21-22.
- 12. Cardenas CG (1971) Steric deshielding in nonrigid systems II Preparation and NMR spectra of the hexachlorocyclopentadiene adducts of 1,3alkadienes. J Org Chem 36: 1631-1637.
- Chalabieva AZ (1996) Discussion on candidate of chemical sciences. Baku, p. 165.
- Veliev MG, Zhalobieva AZ, Shatirova MI, Mamedov ES, Mamedov IM (2001) Diene Condensation of Polychlorocyclic Dienes with Dienophiles of Allylacetylene Series. Russ J Org Chem 37: 223-229.

- 15. Nagiyev YM (2011) Optimal conditions of obtaining reaction of N-mcarboxyphenylimide dichlorinebisyclo [2.2.1] hept-2,3-dicarboxylic acid. Azerb Chem J 2: 129-132.
- Nagiyev YM, Farzaliev VM, Bagirov ST (2006) Optimum conditions of obtaining reactions of mono and bycyclic compounds on the basic of βaminoisobutyronytryl. Azerb Chem J 3: 38-41.
- Nagiyev YM (2012) Synthesis of 2,3-dichlorobicyclo [2.2.1] hept-5ene-2,3-dicarboxylic acid N-carboxyphenylimides. Russ J Org Chem 48: 301-303.
- Nagiyev YM (2010) Kinetic research of dien synthesis N-aryl imides of dichloromalin acid with 1,3-cyclohexaden. Azerb Chem J 3: 152-155.
- Nagiyev YM (2012) Synthesis of N-substituted 2,3-dichlorobicyclo [2.2.2] oct-5-ene-2,3-dicarboxylic acid imides. Russ J Org Chem 48: 469-472.
- Nagiyev YM (2015) Synthesis of N-substituted imides of 2,3dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic Acid. Russ J Org Chem 51: 1183-1186.
- Nagiyev YM (2016) Liquid-phase aerobic oxidation of cumene in the presence of N-phenylimide-endo-2,3-dichloro-bicyclo [2.2.1]-hepta-5en-2,3-dicarboxylic acid. XX Mendeleev Congress. Fundamental Problems of Chemical Science, Russia.
- 22. Gordon AJ, Ford RA (1976) The chemist's companion. M: The world. John Wiley & Sons, New York.