Current Research

Research Article

Synthesis of Four New Brassinosteroids Analogues 11-Oxo-Functionalized on C Ring, with 24-Nor Side Chain and Containing 5 β -Cholanic Acid Skeleton

Luis Espinoza*

Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile

Abstract

In this work, I report the synthesis of four new brassinosteroids analogues with 24-nor side chain and 11-oxo functionalized on C ring, containing 5 β -cholanic acid skeleton: 3α , 12β -diacetoxy-22(S), 23-dihydroxy-24-nor- 5β -cholan-11-one (**20**); 3α , 12β , 22(S), 23-tetrahydroxy-24-nor- 5β -cholan-11-one (**21**); 3α , 12β , 22(S), 23-tetrahydroxy-24-nor- 5β -cholan-11-one (**22**) and 3α , 12β -diacetoxy-[2,2-dimethyl-22(S), 23-dioxolane]-24-nor- 5β -cholan-11-one (**23**) derivatives from commercial deoxycholic acid.

Keywords: Brassinosteroids; C-functionalized; 24-nor side chain

Introduction

Brassinosteroids (Brs) are a naturally occurring steroidal plant hormones group that regulates plant growth and development by producing an array of physiological changes. Brs occur at low concentrations throughout the plant kingdom. They have been detected in all plant organs (pollen, anthers, seeds, leaves, stems, roots, flowers, and grains) and also in the insect and crown galls [1,2]. Further work has demonstrated that Brs not only induce stem elongation but also increase biomass and total crop yield. Moreover, Brs are recognized to have an ameliorative role in plants subjected to various biotic and abiotic stresses, such as high temperature [3], heavy metals excess [4,5], salinity [6], water stress [7,8] and extreme temperatures [9]. Several authors and mainly Hayat et al. have reported structure-activity relationships (SAR) of brassinosteroid [10]. These SAR are based on the functions contained in the A, B ring, A/B ring fusion and in the side chain. However, in recent decades, efforts have been focused on the synthesis of new brassinosteroid analogues, keeping common patterns of organic functions in the A/B rings and cis-trans fusion between these, as in some natural brassinosteroids, but with dramatic structural changes in the side chain (shorter side chains, different oxygenated functions, spirostanic, aromatic and cyclic substituents, esters, carboxylic acids, etc.) and oxygenated functions in C ring. Surprisingly these analogs have presented very important biological activities. On the other hand, the isolation of natural brassinosteroids with oxygenated function in ring C has not been reported. However, the synthesis of this type of analogs is very important for SAR studies of this kind of phytohormone. In this direction, hecogenin (1) is an abundantly available steroidal sapogenin, used as raw material in the production of a large number of Brs spirostanic analogs with oxygenated function in ring C [11-21]. Examples of brassinosteroid analogues oxo-functionalized in C ring are shown in Figure 1. Others active Brs C- oxo and oxa functionalized analogs (6-8) bearing a cholanic acid skeleton were derived from cholic acids [22]. Nevertheless, C-functionalized analogs 9-16 (Figure 2) were obtained from deoxycholic acid [23-25]. The plant growth-promoting activity of compounds 9 and 13 was tested in the hypocotiles elongation and cothyledons expansion of radish bioassay, where the compound 9 showed growth promoting activity at 10⁻⁵ mg/mL concentration in both bioassays, whereas compound 13 showed inhibiter effect in the cothyledons expansion test at the same concentration [24]. Compound 14 showed an increase of 38.6% by weight at 10⁻⁵ mg/mL concentration in cotyledons expansion of radish bioassay [25]. In this work is reported the synthesis and structural determination of four new Brs analogues, obtained from deoxycholic acid, with a cis-A/B ring junction, 24nor side chain and 11-oxo-12 β -hydroxyl/acetate function on C ring containing with 5 β -cholanic acid skeleton.

Materials and Methods

General

All reagents were purchased from commercial suppliers and used without further purification (Merck, Darmstadt, Germany or Aldrich, St. Louis, MO, USA). Melting points were measured on a Stuart-Scientific SMP3 apparatus (Staffordshire, ST15 OSA, UK) and are uncorrected. Optical rotations were obtained for CHCl₂ or CH₃OH, solutions on a Perkin-Elmer 241 polarimeter (Wellesley, Massachusetts, USA) and their concentrations are expressed in g/100 mL. NMR spectra were recorded on a Bruker AM-200 (Bruker, Rheinstetten, Germany) spectrometer operating at 200.1 MHz for ¹H and 50.3 MHz for ¹³C. Chemical shifts are expressed in ppm downfield relative to TMS (δ scale) in CDC1, solutions and coupling constants (J) are given in hertz. Carbon multiplicity were established by a DEPT pulse sequence. IR spectra were recorder as KBr disks in a Bruker FT-IR Vector-22 (Bruker, Germany) and frequencies are in cm⁻¹. Elemental analyses were obtained on a Fisons-Carlo-Erba EA-1108 Automost microanalyzer (Fisons Instruments/Carlo-Erba Instruments, Milano, Italy) For analytical TLC, Merck silica gel 60 in 0.25 mm layer was used and TLC spots were detected by heating after spraying with 25% H₂SO₄ in H₂O. Chromatographic separations were carried out by conventional column on Merck silica gel 60 (230-400 Mesh) using hexane-EtOAc gradients of increasing polarity. All organic extracts were dried over anhydrous magnesium sulfate and evaporated under reduced pressure, below 40°C.

*Corresponding author: Luis Espinoza, Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile, Tel: +560322654225; Fax: +560322654782; E-mail: luis.espinozac@usm.cl

Received: December 17, 2015; Accepted: December 23, 2015; Published: December 30, 2015

Citation: Espinoza L (2015) Synthesis of Four New Brassinosteroids Analogues 11-Oxo-Functionalized on C Ring, with 24-Nor Side Chain and Containing 5 β -Cholanic Acid Skeleton. Organic Chem Curr Res 4: 156. doi:10.4172/2161-0401.1000156

Copyright: © 2015 Espinoza L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Figure 1: Structure of hecogenin (1) and some Brs spirostanic synthetic analogs (2-5), with oxygenated function in ring C.

Figure 2: Structure of 12-oxo (6-7) and 12-oxa (8) functionalized active Brs analogs bearing a cholanic acid skeleton and 12-oxa and 11-oxa C-functionalized (12-14), 11-oxo-12β-hydroxy (15) and 11-oxo-12β-acetoxy (16) deoxycholic acid derivative.

Synthesis

24-oic 3α , 12 β -diacetoxy-11-oxo-5 β -cholan acid (17)

A solution of **16** (3.2 g, 7.61 mmol) and K_2CO_3 (0.8 g, 7.55 mmol) in MeOH (150 mL) was stirred at room temperature for 1.5 h. The end of the reaction was verified by TLC. Then the solvent was removed (until a 40 mL approximate volume) and the residue acidified with 2% HCl (15 mL) and extracted with EtOAc (3 × 20 mL). The organic

layer was washed with 5% NaHCO₃ (30 mL) and water (2 × 15 mL), dried over Na₂SO₄, and filtered. The solvent was evaporated under reduced pressure. The crude was re-dissolved in CH₂Cl₂ (5 mL) and chromatographed on silica gel with petroleum ether/EtOAc mixtures of increasing polarity (19.8:0.2 \Rightarrow 10.2:9.8). Compound 17 (3.17 g, 85% yield) was as a colorless solid: m.p. 85.5-91.7°C (MeOH/Et₂O); [α] $_{\rm D}^{25}$ +46.2° (c=0.405, CHCl₃); **IR**: 3432-2516; 1735; 1243; 1028. ¹H NMR: 0.69 (s, 3H, H-18); 0.93 (d, *J*=6.3 Hz, 3H, H-21); 1.16 (s, 3H, H-19);

2.02 (s, 3H, CH₃CO); 2.15 (s, 3H, CH₃CO); 2.35 (m, 2H, H-23); 2.49 (d, J=10.6 Hz, 1H, H-9); 4.70 (m, 1H, H-3); 4.90 (s, 1H, H-12). Elemental analysis: found C, 68.22%; H, 8.57%; C₂₈H₄₂O₇ requires C, 68.54%; H, 8.63%.

3α , 12β -diacetoxy-24-nor- 5β -cholan-22-en-11-one (18)

To a solution of 17 (3.42 g, 7.69 mmol) in anhydrous benzene (300 mL) were added Cu(OAc), (0.25 g, 1.38 mmol) and pyridine (1.0 mL). Then refluxed and $Pb(OAc)_4$ (8.34 g, 18.81 mmol) was added in four portions at hourly intervals. After the addition was completed, the reaction was continued for 1 h. The end of reaction was verified by TLC, and then the mixture was filtered and the solvent was evaporated under reduced pressure. The crude was re-dissolved in CH₂Cl₂ (5 mL) and chromatographed on silica gel with petroleum ether/EtOAc mixtures of increasing polarity (19.8:0.2→16.4:3.6). Compound 18 (2.24 g, 72.3% yield) was obtained as a colorless solid: m.p. 170.9-172.8°C (hexane/ $Et_{2}O$; $[\alpha]_{D}^{25}+64.8^{\circ}$ (c=0.466, CHCl₃); **IR**: 3069; 1732; 1723; 1637; 1450; 1364; 1237; 1029; 910. ¹H NMR: 0.66 (s, 3H, H-18); 0.99 (d, J=6.9 Hz, 3H, H-21); 1.16 (s, 3H, H-19); 2.02 (s, 3H, CH₂CO); 2.18 (s, 3H, CH₂CO); 2.46 (m, 2H, H-1 and H-20); 2.48 (d, J=10.2 Hz, 1H, H-9); 4.70 (m, 1H, H-3); 4.90 (dd, J=10.1 and 2.1 Hz, 1H, H-23); 4.92 (s, 1H, H-12); 4.95 (ddd, J=17.1, 2.1 and 0.8 Hz, 1H, H-23); 5.77 (ddd, J=17.1, 10.1 and 8.8 Hz, 1H, H-22). Elemental analysis: found C, 72.87%; H, 9.13%; C₂₇H₄₀O₅ requires C, 72.94%; H, 9.07%.

3α , 12β -*dihydroxy*-24-*nor*- 5β -*cholan*-22-*en*-11-*one* (**19**)

To a solution of 18 (1.58 g, 3.55 mmol) in MeOH (60 mL) was added K₂CO₃ (0.79 g, 7.54 mmol), then the suspension was stirred at room temperature for 6 h. The end of the reaction was verified by TLC. Then the solvent was removed (until a 10 mL approximate volume) and the residue acidified with 2% HCl (10 mL) and extracted with EtOAc $(2 \times 20 \text{ mL})$. The organic layer was washed with 5% NaHCO₃ (20 mL) and water (2 \times 10 mL), dried over Na₂SO₄, and filtered. The solvent was evaporated under reduced pressure. The crude was re-dissolved in CH₂Cl₂ (5 mL) and chromatographed on silica gel with petroleum ether/EtOAc mixtures of increasing polarity (19.8:0.2→13.8:6.2). Compound 19 (1.26 g, 98% yield) was as a colorless solid: m.p. 120.3-121.2°C (MeOH/Et₂O); [a]_D²⁵+61.4° (c=0.44, CHCl₃); IR: 3490; 3258; 3066; 1709; 1638; 1453; 1020; 922; 906. ¹H NMR: 0.43 (s, 3H, H-18); 1.06 (d, J=6.9 Hz, 3H, H-21); 1.13 (s, 3H, H-19); 2.43 (m, 1H, H-1a); 2.55 (m, 1H, H-20); 3.57 (m, 1H, H-3); 3.84 (s, 1H, H-12); 4.82 (dd, J=10.2 and 2.2 Hz, 1H, H-23); 4.91 (ddd, J=17.1, 2.2 and 0.8 Hz, 1H, H-23); 5.73 (ddd, J=17.1, 10.2 and 8.7 Hz, 1H, H-22). Elemental analysis: found C, 76.49%; H, 10.15%; C₂₃H₃₆O₃ requires C, 76.62%; H, 10.06%.

3α , 12β -diacetoxy-22(S), 23-dihydroxy-24-nor-5 β -cholan-11-one (20)

To a solution of alkene **18** (2.05 g, 4.28 mmol) in acetone (150 mL) was added NMO (0.45 g, 3.84 mmol). Then the mixture was homogenized by magnetic stirring and 1.5 mL of 4% OsO_4 (0.157 mmol) were added dropwise with stirring for 12 h at room temperature. The end of the reaction was verified by TLC. Then the solvent was removed (until a 25 mL approximate volume) and water (25 mL) and $Na_2S_2O_3.5H_2O$ (25 mL saturated solution) were added. The organic layer was extracted with EtOAc (2 × 30 mL), washed with water (2 × 50 mL), dried over Na_2SO_4 , and filtered. The solvent was evaporated under reduced pressure. The crude was re-dissolved in CH_2Cl_2 (5 mL) and chromatographed on silica gel with petroleum ether/EtOAc mixtures of increasing polarity (19.8:0.2 \Rightarrow 15.6:4.4), by subsequent recrystallization (MeOH/Et₂O) compound **20** was obtained as a colorless solid (1.50 g,

68% yield): m.p. 183.7-186.6°C (MeOH/Et₂O); $[a]_{D}^{25}$ +27.6° (c=0.156, CHCl₃); **IR**: 3423; 1747; 1723; 1248; 1026. ¹H **NMR**: 0.67 (s, 3H, H-18); 0.91 (d, *J*=6.3 Hz, 3H, H-21); 1.15 (s, 3H, H-19); 2.00 (s, 3H, CH₃CO); 2.14 (s, 3H, CH₃CO); 2.47 (d, *J*=11.1 Hz, 1H, H-9); 3.47 (m, 1H, H-23); 3.63 (m, 1H, H-23); 3.72 (m, 1H, H-22); 4.68 (m, 1H, H-3); 4.88 (s, 1H, H-12). Elemental analysis: found C, 67.60%; H, 8.87%; $C_{27}H_{42}O_7$ requires C, 67.75%; H, 8.85%.

3α, 12β, 22(S), 23-tetrahydroxy-24-nor-5β-cholan-11-one (**21**)

To a solution of **20** (0.07 g, 0.146 mmol) in MeOH (50 mL) was added K₂CO₃ (0.035 g, 0.215 mmol), then the suspension was stirred at room temperature for 6 h. The end of the reaction was verified by TLC. Then the solvent was removed (until a 10 mL approximate volume) and the residue acidified with 2% HCl (2 mL) and extracted with EtOAc (2 × 10 mL). The organic layer was washed with 5% NaHCO₃ (10 mL) and water (2 × 10 mL), dried over Na₂SO₄, and filtered. The solvent was evaporated under reduced pressure. Subsequent recrystallization (MeOH/Et₂O) gave compound **21** (0.0485 g, 84.1% yield) which it was identified as a colorless solid: m.p. 152.8-154°C (MeOH/Et₂O); $[\alpha]_D^{25}+99.5^\circ$ (c=0.20, MeOH); **IR**: 3428; 1700; 1066; 1022. Elemental analysis: found C, 69.71%; H, 9.61%; C₂₃H₃₈O₅ requires C, 70.02%; H, 9.71%.

3α, *12β*, *22*(*S*), *23-tetraacetoxy-24-nor-5β-cholan-11-one* (**22**)

Compound 20 (0.09 g, 0.188 mmol) was dissolved in CH₂Cl₂ (30 mL) and pyridine (3.0 mL). Later 4-N,N-dimethylaminopyridine (DMAP, 5 mg) and Ac₂O (3 mL) were added to the solution. The end of the reaction was verified by TLC (2 h), and then the solvent was reduced to a volume about 5 mL, extracted with EtOAc (2×10 mL). The organic layer was washed with 5% KHSO₄ (2×5 mL) and water (2×10 mL), dried over Na2SO4 and filtered. The solvent was evaporated under reduced pressure. The crude was redissolved in CH2Cl2 (3 mL) and chromatographed on silica gel with petroleum ether/EtOAc mixtures of increasing polarity (19.8:0.2 \rightarrow 14.2:5.8), to yield pure 20 (0.09 g, 85.1% yield) as a colorless solid: m.p. 78.1-79.5°C (hexane/EtOAc); [a] ²⁵+41.5° (c=0.412, CHCl₂); **IR**: 1740; 1451; 1370; 1243; 1028. ¹**H NMR**: 0.65 (s, 3H, H-18); 0.99 (d, J=6.7 Hz, 3H, H-21); 1.15 (s, 3H, H-19); 2.01 (s, 3H, CH₂CO); 2.04 (s, 3H, CH₂CO); 2.07 (s, 3H, CH₂CO); 2.14 (s, 3H, CH₂CO); 2.50 (d, J=11.1 Hz, 1H, H-9); 3.97 (dd, J=12.1 and 9.0 Hz, 1H, H-23); 4.29 (dd, J=12.1 and 2.0 Hz, 1H, H-23); 4.69 (m, 1H, H-3); 4.85 (s, 1H, H-12); 5.14 (m, 1H, H-22). Elemental analysis: found C, 66.10%; H, 8.13%; C₃₁H₄₆O₉ requires C, 66.17%; H, 8.24%.

 3α , 12β -diacetoxy-[2,2-dimethyl-22(S), 23-dioxolane]-24-nor-5 β -cholan-11-one (**23**)

To a solution of **20** (0.08 g, 0.167 mmol) in dry acetone (50 mL) was added anhydrous CuSO₄ (0.250 g, 1.57 mmol), then the suspension was stirred in N₂ atmosphere at room temperature for 5 days. The end of the reaction was verified by TLC. Then the mixture was filtered and the solvent was evaporated under reduced pressure. The crude was re-dissolved in CH₂Cl₂ (3 mL) and chromatographed on silica gel with petroleum ether/EtOAc mixtures of increasing polarity (19.8:0.2 \rightarrow 16.8:3.2) to yield pure **23** (0.06 g, 69.2% yield) as a colorless oil; $[\alpha]_D^{25}$ +32.5° (c=0.520, CHCl₃); **IR**: 1734; 1699; 1245; 1066; 1030. ¹H **NMR**: 0.67 (s, 3H, H-18); 0.85 (d, *J*=6.9 Hz, 3H, H-21); 1.13 (s, 3H, H-19); 1.29 (s, 3H, O₂CCH₃); 1.36 (s, 3H, O₂CCH₃); 2.01 (s, 3H, CH₃CO); 2.14 (s, 3H, CH₃CO); 2.45 (m, 1H, H-9); 3.53 (dd, *J*=7.8 Hz and 7.8 Hz, 1H, H-23); 3.89 (dd, *J*=7.8 and 6.3 Hz, 1H, H-23); 4.07 (m, 1H, H-22); 4.67 (m, 1H, H-3); 4.89 (s, 1H, H-12). Elemental analysis: found C, 69.50%; H, 8.97%; C₃0H₄₆O₇ requires C, 69.47%; H, 8.94%.

Page 3 of 6

Results and Discussion

Previously we have reported the synthesis, and structural determination, of compounds 15 and 16 from deoxycholic acid [25]. Selective saponification of 16 in K₂CO₃/MeOH at room temperature afforded acid 17 with 85% yield (Scheme 1). The presence of the carboxylic function was confirmed by the signal at δ_{c} =179.27 ppm in ¹³C NMR spectrum (see Table 1). The olefinic intermediate 18 (Scheme 1) was obtained with 72.3% yield by decarboxylation reaction of 17 in Pb(OAc)₄/Cu(AcO)₂ system, as reported for the preparation of other derivatives [24,26-28]. The presence of terminal exocyclic double bond was confirmed by the signals observed in the ¹H NMR spectrum at δ_u=4.90 ppm (dd, *J*=10.1 and 2.1 Hz, 1H, H-23); 4.95 ppm (ddd, *J*=17.1, 2.1 and 0.8 Hz, 1H, H-23) and 5.77 ppm (ddd, J=17.1, 10.1 and 8.8 Hz, 1H, H-22). While two signals at δ_{c} =113.36 and 142.79 ppm were observed in the ¹³C NMR, assigned to at C-22 and C-23 respectively (see Table 1). Saponification of olefin 18 under mild conditions (K₂CO₂/ MeOH at room temperature for six hours) produces the ketol 19 with 98% yield (Scheme 1) The presence of two signals at δ_{μ} =3.57 ppm (m, 1H) and δ_{μ} =3.84 ppm (s, 1H) in the ¹H NMR spectrum confirms the removal of acetate groups. These carbinolic hydrogens were assigned as H-C3 and H-C12, respectively, according to their observed hydrogen multiplicities. The next step was the dihydroxylation reaction of olefin 18, however, some authors have reported that the electrophilic reactions at the steroidal C-22 double bond with OsO₄, RuCl₃/NaIO₄, Prevost-Woodward reaction with I₂/AgOAc produces predominantly (S) configuration at C-22 [29-31]. Then treatment of the alkene 18, with catalytic OsO₄ in NMO and purification of reaction crude by C.C. and subsequent crystallization, afforded compound 20 with 68% yield (Scheme 1). The presence of three carbinolic proton signals at δ_{μ} =3.47 ppm (m, 1H); 3.63 ppm (m, 1H) and 3.72 ppm (m, 1H) in the ¹H NMR spectrum that were assigned to the hydrogens H-23a, H-23b and H-22, respectively by 2D heteronuclear correlations with C-23 and C-22 and

¹³C DEPT-135 experiment. The configuration at C-22 was established as (S) considering referential aspects for this reaction and comparing NMR spectroscopic data for similar compounds previously reported by us for other derivatives [23,24]. The new derivatives 21, 22 and 23 were prepared from compound 20, according to Scheme 2. Compound 21 was obtained by treatment of 20 under mild saponification conditions (K₂CO₂/MeOH, r.t.) with 84.1% yield, whereas standard acetylation (Ac₂O/DMAP/CH₂Cl₂) of compound 20 produces the tetra-acetylated derivative 22 with 85.1% yield. ¹H NMR spectroscopic evidence indicates the presence of four singlets signals at δ_{μ} =2.01, 2.04, 2.07 and 2.14 ppm (3H, CH₂CO each), while six signals at δ_c =20.86, 20.90, 21.25, 21.40, 169.94, 2 x 170.46 and 170.94, ppm were observed in ¹³C NMR (Table 1), so confirming the presence of four acetate groups in the molecule. Finally, by ketalization reaction of 20 with (CH₂)₂CO/CuSO₄ anhydrous system, the ketal derivative 23 was obtained with 69.2% yield, according to the methodology previously described. In the 1H NMR spectrum of compound 23 two singlets signals at δ_{μ} =1.29 and 1.36 ppm were observed, these were assigned to the methyl of acetonide group $[O_2C(CH_3)_2]$. While in the ¹³C NMR spectrum, the signals observed at δ_{c} =25.33 (CCH₃), 26.39 (CCH₃) and 108.30 ppm [O₂C(CH₃)₂], confirming the presence of acetonide group.

Conclusions

We have designed a synthetic sequence, which allows the obtainment of three new synthetic derivatives (compounds 17-19) from commercial deoxycholic acid and four new brassinosteroids analogues (compounds 20-23) with 24-*nor* side chain, oxygenated function at C-22 (S) and C-23 and 11-oxo functionalized on C ring, containing 5 β -cholanic acid skeleton. Bioassays in Rice Lamina Inclination Test (RLIT) and growth in *Arabidopsis thaliana*, to detect possible biological activity of compounds 20-23, are under being developed and these results will be reported later.

Organic Chem Curr Res ISSN:2161-0401 OCCR an open access journal

Scheme 2: Synthetic route developed for Brs analog 21-23. Conditions and reagents: a. $K_2CO_3/MeOH$, r.t. 6 h, 84.1%. b. $Ac_2O/DMAP/py/CH_2Cl_2$, 2 h, 85.1%. c. $CuSO_4/(CH_3)_2CO$, r.t. 5 days, 69.2%.

С	17	18	19	20	22	23
1	33.94	33.94	36.21	33.89	33.88	33.90
2	27.02	27.01	30.99	27.29	26.99	26.97
3	73.76	73.72	71.05	73.75	73.66	73.68
4	32.31	32.31	34.21	32.25	32.26	32.26
5	42.40	42.41	42.46	42.34	42.33	42.36
6	26.71	26.69	26.67	26.99	27.75	26.67
7	26.34	26.35	26.51	26.99	26.71	26.29
8	36.40	36.49	36.97	36.28	36.17	35.49
9	50.21	50.14	49.83	50.07	50.02	50.06
10	34.14	34.14	33.99	34.07	34.05	34.08
11	203.99	204.01	211.80	203.88	203.54	203.81
12	85.89	85.90	84.12	85.31	85.11	85.46
13	50.10	50.05	52.45	50.34	50.48	50.07
14	55.90	55.40	55.89	53.17	54.10	53.65
15	24.97	24.50	24.60	26.28	26.27	25.99
16	23.17	23.25	23.30	26.70	23.18	23.24
17	53.97	54.01	52.45	54.01	53.09	54.23
18	9.76	10.03	8.83	9.33	9.09	9.53
19	23.14	23.14	23.23	23.18	23.15	23.14
20	32.52	38.65	38.08	37.97	37.01	36.56
21	20.48	22.24	22.22	14.71	14.46	15.58
22	29.32	142.79	143.46	74.00	74.17	77.93
23	31.98	113.36	112.84	63.50	62.56	66.53
24	179.27	-	-	-	-	-
<u>C</u> H ₃ CO	20.77	20.80	-	20.93	20.90	20.81
CH ₃ CO	170.64	170.50	-	170.69	170.94	170.51
<u>C</u> H ₃ CO	21.41	21.34	-	21.43	21.40	21.37
CH ₃ CO	170.23	170.18	-	170.29	170.46	170.12
<u>C</u> H ₃ CO	-	-	-	-	20.86	-
CH ₃ CO	-	-	-	-	169.94	-

<u>С</u> Н ₃ СО	-	-	-	-	21.25	-
CH <u>₃C</u> O	-	-	-	-	170.46	-
OC <u>C</u> H ₃	-	-	-	-	-	26.39
OC <u>C</u> H ₃	-	-	-	-	-	25.33
$O_2 \underline{C} (CH_3)_2$	-	-	-	-	-	108.30

Table 1: δ ¹³C NMR (CDCl₃, 50.3 MHz) for compounds **17-20** and **22-23**.

Acknowledgments

The author thank to the Dirección General de Investigación y Postgrado (DGIP-USM Grant No. 27.15.83.) of Universidad Técnica Federico Santa María for financial support of this work.

References

- Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137-164.
- Feldmann KA (2006) Steroid regulation improves crop yield. Nat Biotechnol 24: 46-47.
- Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, et al. (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27: 49-57.
- Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66: 418-424.
- Yusuf M, Fariduddin Q, Ahmad A (2012) 24-epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. Plant Physiol Biochem 57: 143-153.
- Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69: 105-112.
- Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, et al. (2009) Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31: 889-897.

Page 6 of 6

- Li YH, Liu YJ, Xu XL, Jin M, An LZ, et al. (2012) Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biol Plant 56: 192-196.
- Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A, et al. (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49: 55-64.
- 10. Hayat S, Ahmad A (2011) Brassinosteroids: A Class of Plant Hormone. Springer Dordrecht Heidelberg, London, New York.
- Robaina C, Coll F, Pérez C, Jomarrón I (1995) Reacción de Prêvost-Woodvard con el (25R)-5-2-Espirosten-12-ona. Química & Industria 2: 19-23.
- Robaina C, Ramírez I, Coll F, Pérez C, Pascual A (2001) Síntetis epoxilactonas steroid. Revista Cubana de Química XIII 2: 396.
- Robaina C, Scovino JI, Programa y (1998) Summaries XI Scientific Seminar. National Institute of Agricultural Sciences. La Habana. pp: 132.
- 14. Robaina C, Coll F, Jomarrón I (1995) Espirobrasinoesteroides 12-cetofuncionalizados y su procedimiento de obtención. Cuban Patent.
- Robaina C, Coll F, Alonso E, Enriquez M (2001) (25R)-3E-hidroxi-C-homo-11oxa-5D-espirostan-12-ona y su epímero 3D como reguladores del crecimiento vegetal y su procedimiento de obtención. Cuban Patent.
- 16. Robaina C, Izquierdo Y, Alonso E, Coll F (1999) Síntesis, caracterización y actividad biológica de análogos espirostánicos de brasinoesteroides 5D-hidroxilados. Resúmenes 2do Taller de Química de los Productos Naturales, Centro de Química Farmacéutica. Ciudad de la Habana. p: 3.
- 17. Robaina C, Alonso E, Coll F, Pérez C, Reyes ME, et al. (1996) Síntesis, caracterización y actividad biológica de la 3-epihecogenina y la 2?-3-epihecogenina. Química & Industria 2: 25-27.
- Iglesias MA, Pérez CR, Pérez C, Coll F (2000) Synthetic Steroidal Sapogenins. Part III 23-Ketohecogenin and 23-Ketoisochiapagenin. Synth Commun 30: 163-170.
- Robaina C, Ramírez I, Pascual A, Coll F, Pérez C, et al. (2004) Síntesis y actividad biológica de análogos espirostánicos de brasinoesteroides a partir de la 9(11)-deshidrohecogenina. Revista CENIC de Ciencias Químicas 35: 23-27.

- Robaina C, Coll F, Jomarrón I, Pérez C, Alonso E, et al. (1999) Síntesis y caracterización espectroscópica de la (25R)-2?,3?-dihidroxi-5?-espirostan-12ona y su 12?-oxalactona. Revista CENIC de Ciencias Químicas 30: 107-110.
- Robaina C, Zullo MA, Coll F (2001) Síntesis y caracterización espectroscópica de análogos de brasinoesteroides a partir de ácido cólico. Revista Cubana de Química XIII 2: 396.
- Espinoza L, Cortes M (2002) Synthesis and biological activity of two new brassinosteroid analogues functionalized on ring C. Bulletin of the Chilean Chemical Society 47: 335-347.
- Espinoza L, Cortes M (2002) Synthesis and biological activity of analogues of brassinosteroids. Bulletin of the Chilean Chemical Society 47: 511-516.
- Espinoza L, Bulat F, Coll D, Coll F, Preite MD, et al. (2000) Synthesis and Plant Growth-Activity of three new brassinosteroids analogues. Synth Commun 30: 1963-1974.
- 25. San DJ, Simmons HE (1972) Crown polyether chemistry. Potassium permanganate oxidations in benzene. J Amer Chem Soc 94: 4024-4025.
- Zhou WS, Tian WS (1985) Studies on Steroidal Plant-growth Hormones II: Stereoselective Synthesis of (22s, 23s)-typhasterol from Hyodeoxycholic acid. Acta Shimica Sinica 43: 1060-1067.
- 27. Tian WS, Zhou WS (1989) Studies on Steroidal Plant-Growth Regulator IX. The Preparation of 22R-and 22S-24, 25, 26, 27, 28-Penta-Nor-Brassinolides. Acta Shimica Sinica 47: 1017-1021.
- Ishiguro M, Ikekawa N (1975) Stereochemistry of Electrophilic Reactions at the Steroidal C-22 Double Bond. Chemical & Pharmaceutical Bulletin 23: 2860-2866.
- Emmanuvel L, Shaikh TM, Sudalai A (2005) NaIO4/LiBr-mediated diastereoselective dihydroxylation of olefins: a catalytic approach to the Prevost-Woodward reaction. Org Lett 7: 5071-5074.
- 30. Yang YX, Zheng LT, Shi JJ, Gao B, Chen YK, et al. (2014) Synthesis of 5α-cholestan-6-one Derivatives and their Inhibitory Activities of NO Production in Activated Microglia: Discovery of a novel Neuroinflammation Inhibitor. Bioorg Med Chem Lett 24: 1222-1227.
- Rollin P, Pougny JR (1986) Synthesis of (6z)-cis-9S, 10R-epoxyheneicosene, a component of the ruby tiger moth pheromone. Tetrahedron 42: 3479-3490.