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Abstract
Perovskite type oxides are fascinating nanomaterials and its physical properties of interest to materials science 

through perovskites include superconductivity, magnetoresistance, ionic conductivity, and a multitude of dielectric 
properties, which are of great importance in microelectronics and telecommunication. Recently interest has arisen in 
perovskite-type oxides as catalysts due to high thermal and hydrothermal stability as well as high mechanical strength 
among other properties. In the present work, LaMn1-xFexO3 perovskite was synthesized by the co-precipitation method. 
The product was characterized by X-ray diffractometer (XRD), Scanning electron microscope (SEM), Energy dispersive 
X-ray spectrometer (EDX), Fourier transform infrared spectroscopy (FTIR), UV-visible absorption spectroscopy and
conductivity study. The XRD pattern confirmed the formation of perovskite phase. The SEM micrographs indicated that
the morphology contain porosity due to inter-particle voids. The presence of functional groups of the pure and doped
lanthanum manganite were studied by FTIR. The optical band gap decreases with increasing the content of iron in the
sample. The conductivity study confirmed that the conductivity increases with increasing the content of iron.
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Introduction
During the last decade there have been carried extensive 

searches and investigations of various oxide systems, which can 
be used as multifunctional materials, possessing combination of 
electric, dielectric, ferroelectric, ferroelastic, magnetic and other 
properties. Such materials can be used in different kinds of micro- and 
nanostructured materials of the new generation such as thin films, 
super lattices, nanofibers, nanotubes and nanowires [1-5]. The number 
of catalysts used in modern chemical industries are based on mixed 
oxide including perovskite oxide ABO3 where A is a rare earth element, 
B is 3d transition metals remain predominant [6] perovskite oxides 
crystals can have broad applications in advanced technologies such as 
catalysts, oxide fuel cell, chemical sensors, magnetic materials, electrode 
materials [7-9]. Perovskites, especially LaMnO3, have also been used in 
environmental applications, e.g., the oxidation of hydrocarbons [10-
12], chlorinated organics [13] and H2O2 reactions [14]. LaMnO3 shows 
good stability, flexible oxygen stoichiometry (δ) and the different 
Mn oxidation states i.e., Mn2+, Mn3+, Mn4+, which strongly affects 
the catalytic behavior. Also, isomorphic substitution of metals in the 
perovskite structure allows some control the catalytic properties of the 
material and its several derivatives have been previously investigated 
[15,16]. Lanthanum-based perovskites containing transition metal 
in B-site, (LaBO3, B=Co, Fe, Ni or Mn), show catalytic activity close 
to the noble metal, presenting low cost and high thermal stability. 
The efficiency of these materials depends on the synthesis method 
[17]. Many methods are available for the synthesis of perovskite 
oxide materials such as solid state reaction [18], sol gel [19], solution 
combustion synthesis, electrospinning, hydrothermal synthesis, EDTA 
glycine process, and reverse micro emulsion process, etc. In this work, 
we studied the isomorphic substitution of Mn in the LaMnO3 structure 
by different amounts of Fe to produce LaMn1-xFexO3. The Fe also 
vary the oxidation states and this property can improve the catalytic 
activity in oxidation processes. The sample has been prepared by co-
precipitation method. The average crystallite size and morphology of 
the sample obtained have been investigated.

Experimental
LaMn1-xFexO3 (x=0, 0.1, 0.2) nanoparticle were synthesized by 

co-precipitation method. In this method, stoichiometric amount 
of Lanthanum nitrate [La(NO3)3.6H2O], Manganese chloride 
[MnCl2.4H2O], Ferric nitrate [Fe(NO3)3.9H2O] were dissolved 
in distilled water. After complete dissolution, the solution was 
continuously stirred at 50°C for half an hour. Then the sodium 
hydroxide (NaOH) solution was slowly added until it reaches the pH 
is 13. After reaching this pH, the solution was continuously stirred 
till the black precipitate appears. The precipitate was collected by 
centrifugation and washed several times to remove the chloride. Then 
the precipitate is kept in the oven for 1 hr at 50°C. The final product 
was ground and kept in the muffle furnace for calcined at 800°C for 6 
hoursfor removal of organic template. Synthesized perovskite sample 
were characterized by X-ray diffraction (XRD), scanning electron 
microscopy (SEM), compositional analysis (EDAX), Fourier transform 
infrared (FTIR), UV visible and conductivity study.

Results and Discussion
Structural analysis

The X-Ray diffraction pattern of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) 
nanoparticle were prepared at 800°C are shown in Figure 1. The 
XRD pattern reveals that the prepared LaMnO3 (LMO) nanoparticle 
and iron doped LaMnO3 (LMFO) nanoparticle clearly indicates their 
crystalline nature with the orientation along (1 1 0) and all the other 
peaks are indexed to the cubic (Pm3m) structure of LMO and LMFO 
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nanoparticles. The prepared samples exactly matched with JCPDS 
card no 75-0440. From the XRD pattern, the intensity of the peak 
increases when the iron concentration is increased. The crystallite size 
was calculated using Debye-Scherrer formula. The crystallite size was 
found to be in the range 17-20 nm. While increasing the Fe content 
in the sample, the crystallite size also increases simultaneously [20]. 
The various lattice parameters like crystallite size, dislocation density 
and micro strain are calculated from the XRD pattern and its values 
are shown in the Table 1. From the Table 1, the lattice parameter, 
dislocation density and strain decreases with increasing the dopant 
concentration. The decrease in various lattice parameters is due to the 
substitution of smaller ionic radii (Fe) with the larger ionic radii (La).

Morphological analysis

The surface morphology of the prepared sample was analyzed by 
SEM and the images for sample x=0.0, 0.1 and 0.2 are shown in Figure 2. 
The SEM images of undoped and 0.1 and 0.2 M of iron doped lanthanum 
manganite nanoparticle calcined at 800°C. Figure 2 shows the SEM 
images of pure and iron doped lanthanum manganite nanoparticle. 
These images depict that the particles possess larger agglomeration 
leads to the wide distribution of the sample and possibility to confirm 
the particle which is exhibiting a morphology tending to the spherical 
shape [21]. The particles of all the prepared samples are seems to be 
uniformly distributed. Because of the low calcination temperature of 
the sample, there is porosity found in the sample.

Compositional analysis

The pure and iron doped lanthanum manganite elemental 
compositions were carried out with the help of EDAX shown in 
Figure 3. From the Figure 3a, it shows the expected presence of La, 
Mn and O in the prepared sample and in Figure 3b and 3c confirms 
the stoichiometric mixture of La, Fe, Mn and O atoms in iron doped 
lanthanum manganite (LMFO) samples. There exists an 1% silica found 
in the spectra. No traces of other element were found in the spectra. 
The observed composition is almost equal to the initial composition 
of the sample taken for its preparation [22]. Table 2 represents the 
composition of the elements present in the samples.

FTIR analysis

FT-IR spectra were recorded in the wavenumber range from 500 
to 3500 cm-1. FT-IR spectra of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle 
are shown in Figure 4. The broad absorption band at 642 cm-1 in the 
sample is attributed to the Mn-O vibrations of MnO6 octahedral in 
cubic perovskite structure [23]. With the increasing the amounts of 
Fe, the intensity of absorbance at 642 cm-1 gradually decreases. The 
band around 1391 and 1472 cm-1 are produced by bending vibrations 
in the bonds N-O. The sample calcined at 800°C, there are still some 
carbonates because of the presence of the absorption band at 855 cm-1 
[24]. The wavenumber and corresponding assignment of vibrations 
were shown in Table 3.

Optical analysis

The iron doped lanthanum manganite nanoparticle prepared 
by co-precipitation method whose optical absorption spectra were 
determined in the wavelength range 200-800 nm. Figure 5a shows the 
absorption spectra of the prepared sample. The presence of absorption 
peaks seems to be at 361, 364 and 365 nm of the sample respectively 
[25]. The absorptions spectra reveal that, while increasing the content 

of iron in the sample its absorption increases proportionally. Figure 
5b the tau c plot i.e., the intercept of the straight line portion of (αhυ)2 
versus (hυ) the bandgap has been found for LaMn1-xFexO3 (0 ≤ x ≤ 
0.2) nanoparticle. The optical bandgap for the prepared samples were 
calculated and tabulated in Table 4. The values of the bandgap for 
LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticleis found to be 3.30, 3.25 and 
3.24 eV. The value of the bandgap energy decreases with the increasing 
content of iron in the sample. This is due to the formation of newer 
energy levels of iron in the lanthanum manganese oxide lattice [26]. 
The proper replacement of lanthanum by iron sample is the best proof 
for the decrease in the bandgap energy.

Conductivity analysis

The dc electrical conductivity of the pure and iron doped 
lanthanum manganese oxide nanoparticle was performed by Keithley 
high resistance electrometer 6517B shown in Figure 6. In this method, 
initially the current was measured with respect to the applied voltage 
across the sample at room temperatures [27]. The sample was 
sandwiched between two copper electrode and annealed in an oven. 
The conductivity of the sample increases with the dopant concentration 
because of the mobility of the charge carriers which is depend on 
hopping mechanism. As the voltage increases, the mobility of the 
hopping ions increases which in turn increases the conductivity of the 
material [28]. If increase the iron content in the sample, the oxygen 
vacancies increased. This results increases the free electrondensity and 
conductivity of the material.

Conclusion
LaMn1-xFexO3 perovskite was synthesized by the co-precipitation 

method. The XRD pattern confirmed the formation of perovskite 
phase and the lattice parameters are calculated. The SEM micrographs 
indicated that the porosity due to inter-particle voids and agglomerated 
crystals. The presence of La was confirmed by EDX analysis. FTIR 
spectrum determines the various functional groups present in the 
compound. The optical band gap decrease with increasing the content 
of iron in the sample. The conductivity study confirmed that the 
conductivity increases with increasing the content of iron.

 

 

Figure 1: XRD pattern of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.
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Figure 2: SEM images of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.

 
 Figure 3: EDAX spectra for LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.
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Figure 4: FTIR spectra of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.

 
Figure 5a: Absorption spectra of LaMn1-xFexO3 (0 ≤ x ≤ 0.4) nanoparticle (a) x=0.0 (b) x=0.1 (c) x=0.2.

 

 

Figure 5b: Plot of (αhυ)2 Vs (hυ) for LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle (a) x=0.0.
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Figure 6: Conductivity spectra for LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.

S. No LaMn1-xFexO3
(0 ≤ x ≤ 0.2)

Lattice Parameter
a (Å)

Cell Volume
V (Å)3

Crystallite size D
(nm)

Dislocation density
(1015 lines/m2)

Strain ε
(10-3 m)

1. x=0.0 3.8822 58.51048 17.83 3.1443 0.1180
2. x=0.1 3.8795 58.38849 19.07 2.7481 0.0949
3. x=0.2 3.8792 58.37494 20.52 2.3746 0.0944

Table 1: Structural parameters of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.

LaMn1-xFexO3
(0 ≤ x ≤ 0.2)

Elemental Composition - Atomic fraction %
La Mn O Fe

x=0.0 33.09 3.72 61.61 -
x=0.1 34.58 23.06 35.50 4.57
x=0.2 44.47 36.22 9.91 7.81

Table 2: Compositional analysis for LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.

S. No Wave Number (cm-1) Assignment
1 642 Mn-O stretching vibration
2 1391 N-Obending vibration
3 1472 N-Obending vibration
4 2367 O-H Stretching

Table 3: Functional group of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.

S. NO LaMn1-xFexO3 (0 ≤ x ≤ 0.2) Band gap (eV)
1 x=0 3.30
2 x=0.1 3.25
3 x=0.2 3.24

Table 4: Bandgap values of LaMn1-xFexO3 (0 ≤ x ≤ 0.2) nanoparticle.
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