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Commentary
Toll-like receptors (TLRs) were mostly studied for their function in

innate immunity. These receptors identify distinct pathogen-associated
molecular patterns from bacteria, viruses, fungi and parasites and
initiate cascades of cellular events leading to the inflammatory
response that fights the invading organisms [1].

The skeleton contains numerous blood vessels, tissue surfaces, and
bone cells, all potential substrates for bacterial colonization. Bacterial
diseases such as caries, periodontitis, periapical infection,
osteomyelitis, septic arthritis and others severely affect the skeleton by
causing accelerated bone loss [2]. The mechanism of these diseases
includes activation of TLRs in immune cells by pathogen-derived
molecules. It became apparent that functional TLRs are also expressed
in the bone resorbing (osteoclasts [OCs]) and bone forming
(osteoblasts [OBs]) cells [3-5]. Our studies are focused on OCs.

Communication between the immune and the skeletal systems is
observed in normal physiological processes, but more obviously in
autoimmune and other inflammatory diseases. This interrelationship
prompted Arron et al. [6] to propose the term ‘‘osteoimmunology’’ to
describe the interface between immunology and bone biology. We and
others found that TLR ligands, in addition to their impact on bone
indirectly via activation of TLRs in immune cells, are able to directly
activate TLRs in bone cells, and thus modulate bone metabolism
[3-5,7]. Focusing on the OC, the activation of TLRs in committed OC
precursors (OCPs) results in increased OC differentiation and activity,
and is probably a mechanism by which pathogen-induced bone loss
occurs. On the other hand, activation of TLRs in early non-committed
OCPs inhibits OC differentiation. This inhibition could serve as a
mechanism for down-regulating excessive resorption and as a switch to
promote the differentiation of common precursor cells into
inflammatory cells [8].

TLRs Synergy in Osteoclast Differentiation
The organism is often challenged by more than one TLR ligand at a

time (i.e. more than one type of organism or more than one type of
TLR ligand in the same organism). Therefore, the impact of
simultaneous challenges with different TLR ligands was studies. The
focus of this commentary is our findings with simultaneous TLR
ligands challenges of OC lineage cells. We examined modulation of
both early non-committed OCPs and committed precursors. In the
experimental settings commitment is obtained by treating the bone
marrow-derived OCPs with the physiological OC differentiation
factor, receptor activator of NF-κB ligand (RANKL) [9] before TLRs
activation. As an example we analyzed the impact of poly (I:C)
(mimicking viral single stranded RNA), lipopolysaccharide (LPS,
derived from bacterial cell wall) and CpG-ODN (an oligonucleotide
mimicking bacterial DNA), the ligands of TLR3, TLR4 and TLR9,

respectively. In our analyses, in addition to examination of modulation
of OC differentiation we also examined the modulation of c-Fos, a
transcription factor with a key role in the induction of OC
differentiation [10], as well as 2 cytokines that are also important for
this process (IL-6 and TNF-α) [11,12]. A simultaneous activation of
TLR4 and TLR9 and of TLR3 and TLR9 caused synergistic effects on
OC differentiation; no synergy was observed with TLR4 and TLR9
simultaneous stimulation. The same pattern was obtained in the
increase of c-Fos expression [13]. The overlap between the stimulation
of OC differentiation and the increase in the cytokines expression was
only partial. Simultaneous stimulation by the 3 TLR ligands did not
show synergy in any of the parameters examined. Non-committed
early precursors are bone marrow-derived OCPs without treatment
with RANKL before TLRs activation. In addition to assaying the
inhibition of OC differentiation we also measured the reduction in the
expression of c-Fos and the increase of the anti-osteoclastogenic
cytokine (IL-12) expression [14]. Activation of TLR4 and TLR9 and of
TLR3 and TLR4 caused synergistic effects on OC differentiation; no
synergy was observed with TLR3 and TLR9 simultaneous stimulation.
The same pattern was obtained in the decrease of c-Fos expression and
the increase in IL-12. As in the analyses of the committed precursors,
also here simultaneous stimulation by the 3 TLR ligands did not show
synergy in any of the parameters examined [13].

Increased expression of a TLR induced by ligands of other TLRs is a
potential mechanism to mediate synergistic effects of these ligands. We
indeed showed that TLR3 mRNA and protein levels were increased by
TLRs 4 and 9 ligands. Similarly, TLR9 mRNA and protein levels were
increased by TLRs 3 and 4 ligands. No significant increase was
observed in TLR4 mRNA and protein levels with any of the ligands
[13]. Up-regulation of TLRs in response to a variety of TLR ligands has
been reported previously [15,16].

TLRs Synergy in Innate Immunity
As most aspects of TLRs, also their synergy was studied in immune

cells more extensively than in bone cells. However, it is not the focus of
this communication and will be dealt very briefly. TLR4 and TLR9
were shown to synergize in the production of TNF-α in mouse
macrophages [17]. On the other hand [18] in dendritic cells (DCs)
TLR4 and TLR9 did not show synergy in production of TNF-α, but
synergistically induced IL-12p70 expression. These differences are in
line with the specialized functions of macrophages and DCs; the
macrophages in innate (TNF-α) and the DCs in adaptive (IL-12p70).
Raman et al. [19] applied TLR synergy to enhance a parasite
(Leishmania)-specific immune response. They used a well-established
vaccine candidate, in conjunction with either, a TLR4 agonist, or a
TLR9 agonist, or a combination of the two. Only mice treated with the
vaccine plus the two TLR agonists were able to induce a strong
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effective T cell response during disease and subsequently cured lesions
and reduced parasite burden.

Concluding Remarks

What could be the significance of TLRs synergy?
In the case of the OCs, while the skeleton is affected at low doses of

the TLR ligands also the switch between the OC-lineage and the
inflammatory cells (both share the same precursor) occurs at low doses
of the TLR ligands; thus the “war” against the pathogen starts shortly
after invasion.

Regarding the immune system it was proposed that synergy
between receptors for different microbial products would provide a
safety mechanism, preventing inappropriate, potentially fatal reactions
by reacting to low concentrations of ligands when more than a single
ligand is present [20].

How does the processing of TLR inputs occur?
The TLR ligands interact with populations of cells. The resulting

output could be derived from integration of the signals in the same cell
or that each cell responds to a certain TLR ligand only. Kellogg et al.
[21,22] examined this question for TLR2 and TLR4 ligands
simultaneous stimulation. Independent stimulation of these ligands
induced distinct NF-κB dynamic profiles of entry into the nucleus.
Using automated microfluidic cell culture they found that single cells
continued to show ligand-specific dynamic responses characteristic of
TLR2 or TLR4 signaling rather than a mixed response. Thus, for
simultaneous activation of TLR2 and TLR4 the mechanism, as termed
by this group, is non-integrative processing. It remains to be shown
how simultaneous signals from other TLR ligands combinations are
processed.
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