Commentary

## Synergistic Effect of Photothermal Therapy and Immune Checkpoint Inhibition

Sofia Martinez\*

Department of Molecular Immunology, University of Barcelona, Barcelona, Spain

## DESCRIPTION

Cancer remains one of the leading causes of death globally, and despite advances in surgery, chemotherapy, and radiation therapy, treatment resistance and tumour recurrence remain significant challenges. Photothermal therapy is a minimally invasive treatment modality that uses light absorbing materials to generate localized heat and induce tumour cell death. This technique has been shown to directly ablate tumour cells, disrupt the tumour microenvironment, and enhance the release of tumour associated antigens. Immune checkpoint inhibition is a form of immunotherapy that targets inhibitory pathways in the immune system to restore the ability of immune cells, particularly T cells, to recognize and attack cancer cells. Recent research has explored the combination of photothermal therapy and immune checkpoint inhibition to harness their synergistic effects, enhancing both local tumour destruction and systemic antitumour immunity.

Photothermal therapy relies on the use of nanomaterials or other light absorbing agents that convert near infrared light into heat when delivered to tumour tissue. The generated heat induces cell death through necrosis or apoptosis, depending on the intensity and duration of exposure. Tumour cells undergoing photothermal therapy release damage associated molecular patterns and tumour antigens into the surrounding microenvironment. These molecules act as danger signals, attracting antigen presenting cells, such as dendritic cells, and initiating an adaptive immune response. While photothermal therapy alone can achieve local tumour control, systemic antitumour immunity is often insufficient to eliminate metastatic lesions, which limits its efficacy.

Immune checkpoint inhibition targets regulatory pathways that normally suppress immune activation and maintain self tolerance. Tumour cells exploit these pathways to evade immune surveillance by expressing inhibitory molecules that bind to receptors on T cells and prevent their activation. Monoclonal antibodies directed against these inhibitory molecules can restore T cell activity, promoting tumour cell recognition and destruction. Immune checkpoint inhibitors have demonstrated remarkable efficacy in several cancer types; however, only a subset of patients responds to treatment, often due to low

immunogenicity of tumours or an immunosuppressive tumour microenvironment. Combining immune checkpoint inhibition with strategies that increase tumour antigen release and enhance immune activation, such as photothermal therapy, offers the potential to overcome these limitations.

The combination of photothermal therapy and immune checkpoint inhibition acts synergistically through multiple mechanisms. First, photothermal therapy induces immunogenic cell death, increasing the presentation of tumour antigens and the activation of antigen presenting cells. Second, immune checkpoint inhibitors prevent the suppression of T cell responses, allowing effective recognition and killing of tumour cells. Third, photothermal therapy can remodel the tumour microenvironment by reducing immunosuppressive cell populations and increasing infiltration of cytotoxic immune cells. Together, these effects amplify both the local and systemic immune response, providing a rationale for combination therapy.

Preclinical studies have provided compelling evidence for the efficacy of this combination approach. In mouse models of melanoma and breast cancer, photothermal therapy using gold nanoparticles or other nanomaterials has been shown to increase dendritic cell maturation and enhance T cell infiltration. When combined with antibodies targeting inhibitory immune checkpoints, these studies demonstrate increased tumour regression, reduced metastasis, and improved survival compared to either treatment alone. Importantly, combination therapy induces immunological memory, providing long term protection against tumour rechallenge, a feature not observed with monotherapy.

Translating this approach into clinical practice requires addressing challenges related to safety, delivery, and patient selection. Photothermal therapy involves the application of external light, which may be limited by tissue penetration, tumour location, and accessibility. Advances in imaging guided delivery and minimally invasive optical fibers have improved the precision and safety of photothermal therapy in deep seated tumours. Immune checkpoint inhibitors are associated with immune related adverse events, including inflammation of healthy organs, which requires careful monitoring and

Correspondence to: Sofia Martinez, Department of Molecular Immunology, University of Barcelona, Barcelona, Spain, E-mail: sofiank2martinez@ub.edu

Received: 02-May-2025, Manuscript No. JCSR-25-39002; Editor assigned: 16-May-2025, PreQC No. JCSR-25-39002 (PQ); Reviewed: 23-May-2025, QC No. JCSR-25-39002; Revised: 30-May-2025, Manuscript No. JCSR-25-39002 (R); Published: 06-Jun-2025, DOI: 10.35248/2576-1447.25.10.628

Citation: Martinez S (2025). Synergistic Effect of Photothermal Therapy and Immune Checkpoint Inhibition. J Can Sci Res. 10:628.

Copyright: © 2025 Martinez S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

management. Biomarker driven patient selection, based on tumour immunogenicity, immune cell infiltration, and molecular characteristics, can enhance the likelihood of response while minimizing toxicity.

Combination therapy also has the potential to overcome resistance mechanisms observed with monotherapy. Tumours that are poorly infiltrated by immune cells or express low levels of inhibitory molecules may fail to respond to immune checkpoint inhibition alone. Photothermal therapy can convert these cold tumours into hot tumours by inducing antigen release, increasing immune cell recruitment, and enhancing inflammatory signaling. Conversely, tumours that escape immune surveillance following photothermal therapy can be targeted by immune checkpoint inhibitors, which prevent T cell exhaustion and sustain antitumour immunity. This bidirectional synergy addresses key limitations of individual therapies and increases the therapeutic window.

Ongoing clinical trials are evaluating the safety and efficacy of combined photothermal therapy and immune checkpoint inhibition in a range of solid tumours. Early results suggest that the approach is feasible and well tolerated, with signs of enhanced immune activation and tumour regression.

Integration with other treatment modalities, such as chemotherapy, radiation therapy, or targeted therapies, is also being explored to further improve outcomes. The combination strategy represents a paradigm shift in cancer therapy, leveraging the strengths of local tumour ablation and systemic immune modulation to achieve durable responses.

## CONCLUSION

The synergistic combination of photothermal therapy and immune checkpoint inhibition represents a promising approach to cancer treatment. Preclinical studies demonstrate superior tumour control, reduced metastasis, and long term immune memory with combination therapy. Careful optimization of treatment parameters, patient selection, and safety monitoring is critical for clinical translation. As research progresses, this strategy has the potential to improve outcomes for patients with a variety of solid tumours, offering a new avenue to overcome therapy resistance and achieve durable remission. Continued investigation into mechanistic pathways, development, and combination approaches will be essential to fully realize the therapeutic potential of this synergistic treatment..