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Editorial
Minocycline Hydrochloride (MH) is a second-generation, semi-

synthetic tetracycline antibiotic derivative (Figure 1). It blocks the
association of aminoacyl-tRNA with the bacterial ribosome and thus
inhibits the bacterial protein synthesis. Independent of its antibacterial
property, MH also exhibits potent anti-inflammatory effects, which
makes it a promising drug candidate to combat implant-associated
infection and inflammation [1-5]. In addition, MH can inhibit smooth
muscle cell proliferation and neointimal hyperplasia after arterial
injury [5] and reduce tumor expansion and migration [6]. MH also
demonstrated cytoprotective properties in the cardiovascular, renal,
and Central Nervous Systems (CNS) via its anti-oxidative and anti-
apoptotic properties. MH protects neurons from oxidative stress by
scavenging free radicals [7], prevent excitotoxicity by diminishing
Ca2+ influx and uptake [8], and suppress activation of caspases [9]. As
a result, MH has been shown to provide neuroprotection in a variety of
Central Nervous System (CNS) injuries and neurodegenerative
diseases, such as Spinal Cord Injury (SCI) [10], traumatic brain injury
[9], stroke [11], Parkinson’s disease [12], Alzheimer’s disease [13],
multiple sclerosis [14], and amyotrophic lateral sclerosis [15], etc.

Figure 1: Chemical structure of MH.

However, many of these diseases require continuous high
concentrations of MH at the injury site for effective treatment. For
example, to inhibit tumor growth in mice, the maintenance of 60-120
mg/kg MH is needed for 4 weeks [16], which is much higher than the
standard human dose of 3 mg/kg [17]. Systemic administration of high
doses of MH for extended period of time has been shown to cause side
effect, such as morbidity, liver toxicity, and even death in experimental
animals. Thus, a localized delivery of MH is needed to deliver high
concentrations of MH to the injury sites continuously without causing
significant side effects.

The challenges related to drug delivery of MH is that MH is a small
molecule (Mw = 494 Da) with high water solubility, so that MH was
generally released quickly from current hydrophilic drug delivery
systems [18], such as MH loaded in Poly(Vinyl Alcohol) (PVA)

hydrogel with chitosan [19]. As a result, current drug delivery systems
are not ideal for localized delivery of high concentration of MH over
an extended period of time.

There is a need to develop drug delivery mechanisms for sustained
and controlled delivery of MH. Several strategies have been
implemented and are still under investigation.

1. Hydrophobic polymers have been used to increase the loading
efficiency of MH. As one example, Poly (Lactic-co-Glycolic Acid)
(PLGA) nanoparticles [20] demonstrated sustained release of MH,
although the loading efficiency of MH in the PLGA particles was low
(less than 1%). Adding Dextran Sulfate (DS) into the system could
reduce the solubility of MH so that the diffusion of MH into external
medium would be slowed down to improve the encapsulation of MH
in polymers or nanoparticles. The results showed that addition of DS
solution increased the loading efficiency 1.92% [20].

2. MH can also chelate multivalent metal ions such as Ca2+ and
Mg2+ to form chelate complexes without affecting its biological
activities [21]. For example, MH-Ca2+ chelate has encapsulated into
polyion complex micelle of Carboxymethyldextran-block-poly
(Ethylene Glycol) (CMD-PEG) so that the positively charged MH-Ca2+

chelate could be entrapped in an negatively charged micelle for drug
delivery [22]. Drug loading efficiency in this system is high (50%).
However, MH release from the PIC micelles only lasted for 24 hours,
possibly because the electrostatic interaction is not strong enough for
supporting sustained drug release.

3. Metal ion-assisted complex formation. Both DS and MH have
high binding affinity for metal ions (M+) such as Ca2+ and Mg2+.
When mixing the three components together, an insoluble complex of
MH-M2+-DS can be obtained. In this system metal ions play a critical
role in complex formation and MH release by binding to both DS and
MH molecules simultaneously. The metal ion-mediated interaction is
strong but reversible, which enables high drug loading efficiency (45%)
and sustained release of MH [23].

4. Drug delivery through complex coacervation. Coacervation is a
phase separation of polymer solution into two phases. One of them
with concentrated polymer is the coacervate and the other is an
equilibrium solution [24]. Commonly caused by electrostatic
interaction between oppositely charged polymers, complex
coacervation is formed and usually leads to precipitation [25], which is
also called polyelectrolyte complex. One of the advantages of complex
coacervation is the mild environment for preparation of drug delivery
system. The electrostatic interaction between two polymers is the most
critical factor of forming complex coacervation. Thus, the complex
formation can be affected by various parameters, including charge
density, polymer concentration, ionic strength, pH, and temperature,
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since these factors will affect the electrostatic interaction [26]. Drugs,
such as MH, can be loaded in complex coacervation by different ways
such as physical incorporation in complex, or as one component of
complex [27]. MH is the example that may be used as one of the
components of complex coacervation.

5. MH-loaded complexes may not stay in local injured/diseased site
and diffuse away over time. In order to selectively deliver the MH-
containing complexes at the injury site, it is preferable to encapsulate
the complexes into injectable hydrogel [28,29]. The injectable
properties enable the hydrogel to be delivered at the injury site in
human body with minimal surgical wounds. Hydrogels are ideal
candidates to load and deliver drugs due to its porous and
biocompatible nature. However, since the pore size of hydrogels is
usually too large to slow down the diffusion of drugs, drug delivery
systems are generally incorporated into the injectable hydrogels by
simply mixing before injection, and will be immobilized at certain
positions in the body for localized drug delivery.

Injectable hydrogels can be formed by different mechanisms,
including chemical crosslinking and physically crosslinking. For the
chemical crosslinking, since the exposure of drugs to free radicals
potentially affects drug activity [30], initiator-free approach to prepare
chemical crosslinking hydrogel would be a better choice [31]. Besides
chemically crosslinking hydrogel, physically crosslinking hydrogels are
also popular for drug delivery. Comparing to chemical crosslinking,
physical crosslinking avoids the biocompatibility issue of residue
initiators or monomers. The driving force of physical crosslinking is
usually the phase transition on a change of environmental conditions,
such as salt, temperature and etc [32-40].

This editorial briefly summarized a couple of methods related to
drug delivery of MH for biomedical applications. These methods may
be used for drug delivery of other drug molecules. Work in drug
delivery is a strong component of this journal and manuscripts in this
area are strongly encouraged to submit.
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