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Abstract

Unforeseen reduction in bio-availability of drugs contribute heavily to late phase failure in drug discovery

processes. P-glycoprotein, an efflux pump, that evicts a wide range of drugs is a major cause for reduction in

bioavailability. Classification of potential drugs into binders and non-binders of this protein will aid greatly in

weeding out the failures early in the discovery processes. The need to tap the power of computational ap-

proaches for such prediction is increasingly becoming evident, given the speed and ease with which predictions

can be integrated into the discovery programs.

In this paper, we report development of a prediction method to identify substrates and nonsubstrates of P-

glycoprotein, based on a support vector machine algorithm. The method uses a combination of descriptors,

encoding substructure types and their relative positions in the drug molecule, thus considering both the chemi-

cal nature as well as the three dimensional shape information. A novel pattern recognition method, recently

reported by us has been implemented for delineating substructures. The results obtained using the hybrid

approach has been compared with those available in the literature for the same data set. An improvement in

prediction accuracy with most methods is seen, with an accuracy reaching over 93%.
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Introduction

Permeability glycoprotein (P-gp), a membrane transporter

protein, is one of the major causes for the high attrition rate

toward the end of the drug discovery pipeline, owing to its

action as an efflux pump (McDevitt and Callaghan, 2007).

This protein acts by evicting a range of chemically and phar-

macologically diverse molecules out of the cells thereby

making them unavailable to the intended receptors, causing

multi drug resistance (MDR) in chemotherapy. P-gp is a

product of the MDR1 gene and belongs to the family of

ATP Binding Cassette (ABC) transporters (Gottesman et

al., 2002). It plays a major role in maintaining normal health

by protecting the body against harmful cytotoxic and

xenobiotic compounds (Hennessy and Spiers, 2007). Dur-

ing chemotherapy however, it can prove to be a major hin-

drance if the given drug is perceived by this protein as a

threat to the cell and transported by this protein. The exact
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mechanism of action of P-gp in removal of these compounds

is debated and various methods and models are proposed

(Higgins and Linton, 2001; Schmitt and Tampe, 2002;

Hennessy and Spiers, 2007). However, an undisputed fact

is that, recognition of the compound by P-gp is a pre-requi-

site for it to be subsequently transported. If a useful drug

compound has to be available at the site of action in the

intended quantities, it would then be required to ensure that

it would not be recognized and transported out by P-gp.

This requirement has led to labeling the protein as an

antitarget. Proteins such as human ether-a-go-go-related

gene (hERG) protein channel and Cytochorome-P450

(CYP3A4 and CYP2B) also belong to this category

(Recanatini et al., 2004).

Methods to determine P-gp activity utilize different ex-

perimental approaches, such as (a) the transporter is iso-

lated followed by purification using a combination of anion

exchange and affinity chromatography (Shapiro and Ling,

1994; Sharom, 1995), or (b) by using the transepithelial flux

of digoxin across Caco-2 cells (Wandel et al., 1999) and (c)

by measuring the displacement of 3H-vinblastine and 3H-

verapamil from human intestinal Caco-2 cells over expressed

with P-gp (Doppenschmitt et al., 1999) or (d) alternately, by

the determination of binding affinities using the concepts of

affinity chromatography, where a liquid chromatographic

stationary phase containing immobilized P-glycoprotein was

synthesized using cell membranes obtained from P-gp-ex-

pressing cells and the resulting P-gp stationary phase used

in frontal and zonal chromatographic studies to investigate

the binding of various drugs (Lu et al., 2001). Understand-

ably these methods are not only time-consuming but also

require significant resources.

Given the need for large scale screening of compounds

for P-gp binding in multiple stages of almost every drug

discovery process, it is no surprise that there is a lot of in-

terest currently to develop appropriate computational meth-

ods for initial screening. Availability of screening data in-

cluding those in organized databases renders exploration of

newer computational approaches feasible. Several machine

learning and other computational classification systems have

been reported in the literature with differing prediction ac-

curacies and differing mechanisms of classification for pre-

dicting the substrates and nonsubstrates of P-gp. Some ex-

amples are the pharmacophore models based on whole mol-

ecule descriptors (Penzotti et al., 2002), a Support Vector

machines (SVM) method using various atom type counts

and connectivity indices as descriptors (Xue et al., 2004), a

topological substructural approach (Cabrera et al., 2006)

and a SVM optimized by a particle swarm using topological

and functional group based indices as descriptors (Huang

et al., 2007). By classifying the compounds as substrates

and nonsubstrates of P-gp, compounds which are substrates

to P-gp can be avoided in the rational drug design. While

each of the methods has their own merits and hence suc-

cesses, it is clear that newer concepts in recognizing pat-

terns are required to gain a more comprehensive under-

standing of the binding preferences and achieve higher pre-

diction accuracies.

Support vector machines are popularly used classifica-

tion technique for differentiating drugs for their classes us-

ing sets of molecular descriptors (Xu and Hagler, 2002;

Burbidge et al., 2001; Zhao et al., 2006) due to their high

performance in generalization, computational efficiency and

robustness in high dimensions (Burges, 1998). The success

in using machine learning algorithms for classification, in

general depends critically on the choice of features, used

for training them. Hence, it is important to explore use of

different features, also commonly referred to as descrip-

tors in correlating molecular properties to pharmacological

or toxicological activities. Recently we developed a

toxicophore based SVM approach to predict torsadogenicity,

which resulted in a classifier superior to that reported in the

literature, for predicting Torsade de pointes (TdP), with pre-

diction accuracies of around 90% (Bhavani et al., 2006).

Encouraged by the success of the approach, we have ap-

plied it here for predicting binding potential to P-gp, with an

improvement in feature representation. The method adopted

by us uses a combination of statistical mining of important

substructures representing possible toxicophores, their oc-

currence patterns as well as a three dimensional measure

of the distribution of the substructures in the molecule. In

addition, pair-wise Euclidian distances among the substruc-

tures in a compound are computed and used in combina-

tion.

Methods

Data Set

P-gp substrates and nonsubstrates were obtained from

the literature by the report of Xue and co-workers (Penzotti

et al., 2002; Xue et al., 2004). Using their data set, a total of

116 substrates and 85 nonsubstrates of P-gp were collected.

The three-dimensional coordinates of the substrates and

nonsubstrates of P-gp are obtained in structure-data format

(SDF) from publicly available databases such as Ligand.Info

(http://ligand.info/) (von Grotthuss et al., 2004), Pubchem

(http://pubchem.ncbi.nlm.nih.gov/) and Enhanced NCI da-

tabase (http://129.43.27.140/ncidb2/). The training and test
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set from Xue and co-workers is used with available com-

pounds from the above mentioned databases. So the train-

ing set is made of 138 compounds (73 substrates and 65

nonsubstrates) and the test set is made of 32 compounds

(23 substrates and 9 nonsubstrates). The true positives and

true negatives are in the ratio of 1.12: 1. The compounds

which are in the independent validation set are used by ran-

dom selection, to comprise the training and test sets to verify

the results of the classification model. These compounds

were converted to MOL2 format using openbabel-2.1.1,

( h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t /

s h o w f i l e s . p h p ? g r o u p _ i d = 4 0 7 2 8 & p a c k a g e

id=32894&release_id=521581), using which, all further pro-

cessing was carried out. The number and ratio of the num-

ber of positive to the negative compounds were maintained

both in the training and the test sets.

Developing the support vector machine classifier

The development of the classifier involves extraction of

substructures from the training set, followed by pruning the

substructures for obtaining the optimal number of substruc-

tures that represents the entire training set. This is followed

by extraction of different features such as (i) the number of

instances of substructures present within each drug and (ii)

the Euclidian distance of the centroid of the substructure(s)

from the centroid of the drug molecule and (iii) Euclidian

distances between centroids of each pair of substructures

occurring in a molecule. Next, a SVM based classifier was

trained, based on the extracted features. The test set com-

pounds were predicted for their class as either substrates

or nonsubstrates of P-gp.

Extraction of optimal discriminating substructures

The problem of identifying a set of substructures from a

given set of molecules in their 3D representation can be

mapped to that of determining a set of common sub graphs

from a given set of graphs. Accordingly, the training set

compounds were converted to their corresponding set of

topological graphs and frequently occurring substructures

were extracted using the Frequent Sub Graph (FSG) algo-

rithm (Kuramochi and Karypis, 2004). The FSG algorithm

was able to extract substructures efficiently and found to

be computationally less expensive compared to other meth-

ods, hence leading us to choosing the FSG approach for the

work. Substructures present in a database of graphs were

extracted with a minimum support percentile or threshold

(ó), which signifies that substructures are present in at least

ó% of the input database of graphs. The frequent substruc-

tures were extracted from the training set compounds using

the FSG implementation available in the PAFI toolkit (http:/

/glaros.dtc.umn.edu/gkhome/pafi/overview) (Ghoting et al.,

2005). Various thresholds ranging from 7% to 30% were

tried out for extracting the substructures.

A very large number of frequent substructures were gen-

erated with the threshold value, of which most of them are

not helpful in generating the classification model and hence

the prediction. So the parent-child relationship among the

substructures was exploited to obtain the optimal number of

substructures that are representative of the entire training

set compounds. The algorithm to find the optimal number of

substructures and for finding discriminating substructures is

as described by us previously (Bhavani et al., 2006).

Feature Generation

Two types of features were derived from the each of the

parent substructures generated in the previous step. The

first feature corresponds to the number of occurrences of a

given substructure, while the second pertained to the geo-

metric description of the substructure, with respect to each

of the compounds that contained them. Feature extraction

involved four pre-processing steps: (a) determining number

of instances of substructures in the compounds of the train-

ing set, (b) determining normalized weights for the pres-

ence of each substructure in the compounds and (c) deter-

mining the position(s) of each of the discriminating substruc-

tures in the compounds (if present) in the training set and

(d) determining the pair-wise centroid distance among the

substructures in a compound.

Discriminating substructures can be used either as binary

features (the presence or absence of a substructure) or by

determining the number of instances of substructures in the

compounds in the dataset. We propose the use of number

of instances of substructures since the properties of a drug

are dependent on both the presence as well as the number

of instances of substructures. The substructures obtained

during the discriminating substructure selection were rep-

resented as SMILES patterns (http://www.daylight.com/

dayhtml_tutorials/languages/smiles/index.html) and the

structure information of compounds in MOL2 format were

used both to determine the number of instances of a par-

ticular substructure in a compound and their positions by

employing the various functions present in the OELib

( h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t /

s h o w f i l e s . p h p ? g r o u p _ i d = 4 0 7 2 8 &

p a c k a g e _ i d = 1 0 0 7 9 6 & r e l e a s e _ i d = 1 9 7 2 0 1 ) .

The probability of occurrence of the discriminating sub-

structure in the training set compound was used to assign

the weights for the various features that are generated for

package

Journal of Proteomics & Bioinformatics  - Open Access

           Research  Article        JPB/Vol.2/April 2009



Journal of Proteomics & Bioinformatics  - Open Access

                Research  Article        JPB/Vol.2/April 2009

J Proteomics Bioinform Volume 2(4) : 193-201 (2009) - 196
 ISSN:0974-276X   JPB, an open access journal

the classification. Also the weights were based on the ratio

of positive compounds to negative compounds in the train-

ing set. The performance of the classifier can be enhanced

by using the default from deviation probability as well as the

ratio of number of positive compounds to negative com-

pounds as described by us previously (Bhavani et al., 2006).

The spatial arrangement of substructures can be consid-

ered by calculating the Euclidian distances between the vari-

ous substructures. In order to keep the number of features

at an optimum level and to incorporate information about

the geometry of the compound, we propose that the Euclidian

distances between the centroid of the compound and the

centroid of the substructures contained in the compound

can be considered. Among the maximum/minimum/both

Euclidian distances, maximum Euclidian distance is consid-

ered for the generation of the feature when more then one

instance of the substructure is present in a compound. Also

the pair-wise Euclidian distance among the substructures

present in a compound is calculated using the maximum

Euclidian distance of a substructure for the generation of

an additional feature when there is more than one substruc-

ture is present in a compound. If the compound contains

only one substructure then pair-wise Euclidian distance is

0. The weighted centroid was calculated by taking the atomic

weights and the 3D coordinates that indicates the position

of the atom in the 3D space as described by us previously

(Bhavani et al., 2006).

The feature set generated for each of the compound con-

sists of a combination of features i.e., the number of in-

stances of discriminating substructures present in the com-

pound, the number of instances of discriminating substruc-

tures present in the compound with weights, the Euclidian

distances between the centroid of the substructure to the

centroid of the compound and the pair-wise Euclidian dis-

tances among the substructures in a compound.

The classification and prediction model

The generated features were used to construct the clas-

sification model using support vector machines. The

SVMLight package was used in training and classification

of the compounds using the generated features (Joachims,

1999). The parameters in SVMLight package are used with

their default value. The linear kernel function is used for the

classification as it gives a good performance for the linearly

separable classes. The radial basis kernel function was also

tried but it did not offer any advantage as compared to the

linear kernel. The threshold for extraction of frequent sub-

structures was varied from 7% to 30% and parent child

relationships among substructures were used to extract the

most discriminating substructures. The features were gen-

erated for the different thresholds and the prediction accu-

racy was evaluated for the test set in terms of the correctly

predicted substrates and nonsubstrates of P-gp.

Results and Discussion

Using the classifier developed, the test set compounds

were tested for the P-gp binding potential. The results were

obtained using 7 different types of features along with 8

different threshold values for each feature type, resulting in

testing the algorithm with 56 parameter sets. The various

features include (i) the number of instances of substruc-

tures (unweighted), (ii) the number of instances of substruc-

tures (weighted), (iii) the Euclidian distance between the

centroid of the substructure to the centroid of the compound,

(iv) all pair wise centroid distances between the substruc-

tures in a compound and (v) combinations of these fea-

tures. The number of discriminating substructures was found

to be 499 at 7% threshold, 435 at 8%, 330 at 9%, 237 at

10%, 92 at 15%, 38 at 20% and 28 at 25% and 21 at 30%.

Of these, 9% threshold was found to be the least constrained

but most informative in terms of the prediction accuracies

obtained for the best set of features, as described below.

Prediction accuracies for the seven different feature sets

at different thresholds are shown in Table 1, where both the

prediction accuracies as well as the number of support vec-

tors are indicated for each combination. It is clear from the

table that use of occurrences of substructures lead to a pre-

diction accuracy in the range of about 59 - 81%, which on

the whole improves marginally, when the number of instances

of substructures are weighted by the probability of occur-

rence as described earlier.

The prediction rates however increased significantly when

the Euclidian distances of the substructures to the centers

of the respective molecules were considered. This is not

surprising, because, by considering the distances between

the substructure centroids, we are obtaining a reasonable

idea of the shape of the molecule and the relative position

of the two or more substructures that might be present in a

given molecule. The highest prediction accuracy of 93.75%

was obtained at 9% threshold (value of parameter C is

0.0006) for the feature set containing the combination of

weighted instances of substructures and distances between

the centroid of the substructure to the centroid of the whole

molecule. Also the same prediction accuracy is obtained

with all pair-wise centroid distances combined with weighted

instance and Euclidian distance at 20% threshold (value of

parameter C is 0.0004).
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Table 1: Overall Prediction Accuracy (in %) using (i) Number of instances of substructures (Unweighted), (ii) Number of

instances of substructures (Weighted), (iii) Euclidian distances, (iv) Number of instances of substructures (Weighted) and

Euclidian distances, (v) All pair-wise centroid distance between substructures, (vi) Euclidian distances and all pair-wise

centroid distance between substructures, and (vii) Number of instances of substructures (Weighted) and Euclidian distances

and all pair-wise centroid distance between substructures at different values of  ó.

Receiver Operating Characteristic (ROC) curve is a plot

of true positive rate vs. false positive rate of a binary clas-

sification system as the score of decision threshold is varied

(Fawcett, 2004; Provost and Fawcett, 2001). The ROC

curve for the classification using Euclidian distances and

weighted instances of substructures is given in Figure 1.

The area under the ROC curve is 0.9758. The results are

validated by random selection of training and test sets and

the prediction accuracies for the original data as well as for

the randomized sets are illustrated in Figure 2. Also 5 fold

cross validation results for the training and test set correlate

for the results of different descriptors. As an additional veri-

Prediction accuracy (%) 

σ%
No of 

instances of 

substructure 

(Un 

weighted) 

No of 

instances of 

substructures 

(Weighted) 

(a) 

Euclidian 

distances 

(b) 

(a+b) 

All pair-wise 

centroid 

distance 

between 

substructures 

(c) 

(b+c) (a+b+c) 

7% 
59.38 

(129) 

65.62 

(129) 

84.38 

(104) 

87.50 

(113) 

68.75 

(117) 

68.75 

(117) 

71.88 

(117) 

8% 
59.38 

(130) 

65.62 

(130) 

90.62 

(105) 

87.50 

(115) 

71.88 

(119) 

71.88 

(118) 

71.88 

(116) 

9% 
62.50 

(131) 

65.62 

(129) 

90.62 

(100) 

93.75 

(114) 

78.12 

(112) 

78.12 

(113) 

78.12 

(112) 

10% 
65.62 

(131) 

65.62 

(129) 

90.62 

(105) 

87.50 

(113) 

75.00 

(111) 

71.88 

(111) 

75.00 

(111) 

15% 
71.88 

(129) 

68.75 

(126) 

84.38 

(101) 

81.25 

(108) 

78.12 

(103) 

78.12 

(104) 

81.25 

(104) 

20% 
81.25 

(123) 

75.00 

(123) 

87.50 

(93) 

84.38 

(103) 

90.62 

(99) 

90.62 

(99) 

93.75 

(97) 

25% 
71.88 

(124) 

75.00 

(124) 

81.25 

(96) 

81.25 

(103) 

90.62 

(103) 

87.50 

(98) 

87.50 

(102) 

30% 
68.75 

(121) 

84.38 

(123) 

78.12 

(96) 

84.38 

(100) 

84.38 

(96) 

84.38 

(97) 

84.38 

(98) 
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Figure 1: ROC curve for the classification using Euclidian distances and weighted instances of the substructures.

fication, the DrugBank (Wishart et al., 2006) compounds

were obtained and converted to MOL2 format and tested

for classification using them as unknown class. The Euclidian

distance and weighted instances of the substructure fea-

ture is used in classification of the DrugBank Compounds.

In the 1048 compounds of DrugBank, 437 compounds were

found to have binding potential to P-gp. Of these we could

validate 10 out of 12 binder and a single non binder com-

pound common with our training data. Some of the

DrugBank compounds classified as substrates and

nonsubstrates are shown in Table 2. As the discriminating

substructures vary with the training and test sets, the re-

sults are also varying in random sets and 5 fold cross vali-

dation. Most of the cases the Euclidian distance descriptor

found to be giving good results and in some cases the com-

bination of descriptors. The better results can be attributed

to the presence of certain discriminating substructures that

are specific to substrates and nonsubstrates of P-gp.

Many computational methods are available for predicting

different pharmacological activities. Structure based ap-

proaches overcome some of the difficulties faced in classi-

cal QSAR methods based on various electronic, steric and

hydrophobic properties, since they operate directly on the

molecular structures and on their constituent substructures

(Oprea and Matter, 2004). Inductive Logic Programming,

Neural networks and SVM based on structure are avail-

able (Xu and Hagler, 2002; Srinivasan and King, 1999) to
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Figure 2: Comparison of the overall prediction accuracy (in %) using the following sets of features: (a) number of

instances of substructures (unweighted), (b) number of instances of substructures (weighted), (c) Euclidian distances, (d)

number of instances of substructures (weighted) and Euclidian distances (e) all pair-wise centroid distance between sub-

structures (f) Euclidian distances and all pair-wise centroid distance between substructures, and (g) number of instances of

substructures (weighted) and Euclidian distances and all pair-wise centroid distance between substructures for predicting

binding potential to P-gp.

predict several adverse drug reactions such as

torsadogenicity, carcinogenicity and mutagenicity based on

molecular descriptors which can be physicochemical prop-

erties derived from structure or substructures extracted from

the set of compounds (Burbidge et al., 2001; Deshpande et

al., 2005; Yap et al., 2004). Support vector machine based

on substructures have been shown to give better results

compared to other descriptors based on physiochemical prop-

erties (Bhavani et al., 2006; Deshpande et al., 2005). In this

study, it is interesting to note that we obtain an improvement

of 13% over the SVM method of Xue et al which uses

various atom type counts and connectivity indices as de-

scriptors, a 15% increase in accuracy over the method of

Cabrera et al that uses topological descriptors and 3% in-

crease in accuracy over the method of Huang et al., that

uses a SVM coupled with particle swarm optimization. Also

combining our features with some of those already reported

is likely to result in more useful classification. It is important

Prediction Accurary for Different Feature Sets
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to recognize the different features that give rise to a high

classification model such as that reported here, so that it

will set the stage to explore in the future if combinations of

such features can yield higher understanding of the correla-

tions between the feature set, the classifier and the model

and hence result in even higher prediction accuracies. Abil-

ity to detect those compounds that are likely to bind to P-gp,

will help in weeding them out early in the drug discovery

process, leading to significant reductions in the attrition rate.

Given the speed and ease with which computational meth-

ods can be utilized for such purposes, they have the poten-

tial to be integrated as an essential component of the dis-

covery processes.
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